Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Weaving electronics into the fabric of our physical world

Aligned carbon nanotubes, coated with a conducting polymer
Credit: CORE-Materials from Flickr
Aligned carbon nanotubes, coated with a conducting polymer Credit: CORE-Materials from Flickr

Abstract:
The integration of electronics with materials opens up a world of possibilities, the surface of which is just being scratched. Professor Arokia Nathan has joined the University to take up a new Chair in Engineering, where he will be exploring the application of research that allows us to glimpse a world rivalling our wildest dreams of the future.

Weaving electronics into the fabric of our physical world

Cambridge, UK | Posted on January 25th, 2012

The potential applications for nanophotonics and nanoelectronics are truly startling, suggesting the brink of a revolution in human-machine interfaces that could turn science fiction into a reality. From interactive paper to clothing that generates energy and light-weight material with X-ray capabilities, weaving electronics into the building blocks of everyday materials will undoubtedly impact how we live in the future.

The Electrical Division in the Department of Engineering is leading the charge for Cambridge, both in terms of fundamental research and application within industry. While research is of course essential, of almost equal importance in fields like nanoelectronics is showing real world application, demonstrating the potential of technology to industry through prototyping, and encouraging investment from around the world.

To aid this approach, the University has recently recruited Professor Arokia Nathan from University College London (UCL) to a new Chair of Photonic Systems and Displays. Nathan, a world leader in the development of display technology, will work between the three primary groups in the Electrical Engineering Division (electronic materials, photonics and energy), acting as a conduit and catalyst for ideas and research.

"For me this is a fantastic opportunity to collaborate with researchers at the top of their game, working on this idea of systems that can integrate functionality such as communications and energy into materials to enhance everyday life," he explained. One of his primary visions for Cambridge is the foundation of a new Design Centre to demonstrate the potential of this technology to industry through prototyping and to encourage investment from around the world.

Initially, Professor Nathan and colleagues within the Division will be developing electronic systems that can be seamlessly layered on to a material or substrate, such as plastic or polyester, with embedded transistors and sensors for transmitting and receiving information. While at UCL, Nathan and a team of collaborators from CENIMAT/FCTUNL, Portugal demonstrated the first inverter and other circuit building blocks on a piece of paper, representing the first step towards animated images and videos on magazine pages.

Power is a vital question for these processes to address. "If a magazine has electronic displays as an integral part of a page, then it's got to cover its own power," says Nathan. "Solar energy will be a major focus of the work. I can see it becoming commonplace for clothing to have embedded electronics that generate energy from solar and even body heat, essentially doubling as a battery that can be charging your phone as it's in your pocket.

This could be coupled with what's known as ‘green broadcasting', to build a picture of an individual self-powering their portable electronics as they are out and about. "These portable devices which otherwise lay idle could be sending out information at very low bit rates without using much energy. It could always be active - this is where our photonics group has expertise," says Nathan. "It's easy to see how these technologies might appeal to major industry, from clothing manufacturers to publishers, and certainly the military."

Nanowires will be a key area of investigation for Nathan in the coming years. These structures have an extraordinary length-to-width ratio, only a few nanometres in diameter, and a much greater capacity in terms of speed. "Uniformly dispersed over large areas, the wires could result in millions of transistors on a single sheet of A4 for example," says Nathan.

"While it hasn't been done yet, we will be working on this in an attempt to match the speeds of a Pentium-like chip, scaled to A4. Pentium chips cost 10 dollars per centimetre squared, while a nano thin film transistor could cost as little as 10 cents per centimetre squared, a much cheaper alternative."

Industries such as biomedicine could also benefit hugely from this interlacing of nano-electronics into materials. "You could foresee a time when you can take the X-ray to the patient rather than vice-versa," says Nathan. "Patients might lie on a surface woven with electronics, so that data can be broadcast straight from the material. You couldn't do this with Pentium-like chips because of yield and cost issues."

"With these non-conventional materials you have a great deal of freedom. We believe this approach to circuitry in substrates will lead to the creation of smart substances, and once you start thinking about the possible applications, it's hard to stop: surgeon's gloves with smart skin, walls of a house that store energy and generate large-scale displays, magazines with interactive video in the pages, devices that dissolve the toxins in water, bio-interfaces in mobile phones with diagnostic capabilities, clothing that generates energy - the possibilities are endless!"

####

For more information, please click here

Contacts:
Tel: 44 01223 332300
Fax: 44 01223 330262

Copyright © University of Cambridge

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Centre for Advanced Photonics and Electronics (CAPE):

Related News Press

Display technology/LEDs/SS Lighting/OLEDs

Unraveling the light of fireflies December 17th, 2014

News and information

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Possible Futures

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers discern the shapes of high-order Brownian motions November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Open Materials Development Will Be Key for HP's Success in 3D Printing: HP can make a big splash in 3D printing, but it needs to shore up technology claims and avoid the temptation of the razor/razor blade business model in order to flourish November 11th, 2014

Academic/Education

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

FEI and Oregon Health & Science University Install a Complete Correlative Microscopy Workflow in Newly Built Collaborative Science Facility December 16th, 2014

Student Nanotechnology Laboratories Network Set Up in Iran December 15th, 2014

SUNY NanoCollege Celebrates Winter Commencement: Graduates To Pursue High-Tech Career And Educational Opportunities In New York State December 5th, 2014

Nanomedicine

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Sensors

Promising new method for rapidly screening cancer drugs: UMass Amherst researchers invent fast, accurate new nanoparticle-based sensor system December 15th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

Detecting gases wirelessly and cheaply: New sensor can transmit information on hazardous chemicals or food spoilage to a smartphone December 8th, 2014

Nanosensor to Detect Naproxen Drug Produced in Iran December 6th, 2014

Nanoelectronics

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Nanoscale resistors for quantum devices: The electrical characteristics of new thin-film chromium oxide resistors that can be tuned by controlling the oxygen content detailed in the 'Journal of Applied Physics' December 9th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Discoveries

Unraveling the light of fireflies December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Fraud-proof credit card possible because of quantum physics December 16th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Materials/Metamaterials

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Graphene Applied in Production of Recyclable Electrodes December 13th, 2014

A golden thread through the labyrinth of nanomaterials December 12th, 2014

Pixelligent Closes $5.5 Million in Funding: Capital Will Be Used to Support Global Customer Growth December 12th, 2014

Announcements

Unraveling the light of fireflies December 17th, 2014

First Home-Made Edible Herbal Nanodrug Presented to Pharmacies across Iran December 17th, 2014

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Scientists trace nanoparticles from plants to caterpillars: Rice University study examines how nanoparticles behave in food chain December 16th, 2014

Military

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

Appointments/Promotions/New hires/Resignations/Deaths

Nanomedicine expert joins Rice faculty: Gang Bao combines genetic, nano and imaging techniques to fight disease December 17th, 2014

Nexeon Attracts ex-Nokia Product Executive to its Board of Directors December 15th, 2014

Arrowhead Appoints Patrick O'Brien as General Counsel December 4th, 2014

Mining entrepreneur Julian Malnic Joins Deep Space Industries’ Board: Deep Space Industries welcomes a prolific mining entrepreneur and accomplished company builder, Julian Malnic, to its Board of Directors November 14th, 2014

Energy

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Textiles/Clothing

Simple, Biocompatible Method Developed for Production of Antibacterial Cotton Fabrics December 1st, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

New Method for Production of Stable Antibacterial Fabrics without Color Change November 18th, 2014

Total Nanofiber Solutions Company FibeRio® Launches The Fiber Engine® FX Series Systems with 10X Increase in Output November 18th, 2014

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Nexeon Attracts ex-Nokia Product Executive to its Board of Directors December 15th, 2014

Defects are perfect in laser-induced graphene: Rice University lab discovers simple way to make material for energy storage, electronics December 10th, 2014

Lengthening the life of high capacity silicon electrodes in rechargeable lithium batteries: Novel rubber-like coating could lead to longer lasting batteries December 2nd, 2014

Atmospheric carbon dioxide used for energy storage products December 2nd, 2014

Solar/Photovoltaic

Lifeboat Foundation gives 2014 Guardian Award to Elon Musk December 16th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

New Technique Could Harvest More of the Sun's Energy December 9th, 2014

Light propagation in solar cells made visible December 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE