Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Compact, low-cost and fast hyperspectral imaging solution

Abstract:
Today at SPIE Photonics West 2012, imec has demonstrated a hyperspectral camera solution based on a system-on-chip image sensor with an integrated hyperspectral sensor. Imec's solution is fast and enables small and cost-efficient camera-solutions. It targets multiple industrial vision applications.

Compact, low-cost and fast hyperspectral imaging solution

San Francisco, CA and Leuven, Belgium | Posted on January 24th, 2012

Hyperspectral cameras combine spectroscopy and imaging, and by doing this, they can e.g. discriminate between different objects that cannot be accurately distinguished using traditional RGB (red-green-blue) imaging methods. The technology can be very useful in many application domains such as crop screening, food selection, skin cancer detection, target detection, .... However, the currently available hyperspectral cameras are large, expensive and slow. Therefore, they can often not be used for time-critical or high-throughput applications, and their use is thus limited to highly specialized research environments. Imec's chip-based technology paves the way towards the industrial application of hyperspectral imaging, as it enables small, cost-efficient and fast solutions.

Imec's fully integrated CMOS compatible hyperspectral sensor, today presented at SPIE Photonics West 2012, consists of a set of spectral filters that are directly post-processed at wafer level on top of a commercially available CMOSIS CMV4000 image sensor (a 4 megapixel sensor with a maximum framerate of 180fps). The hyperspectral filter, developed at imec, has100 spectral bands between 560nm and 1000nm. The filter bandwidth (Full Width Half Max) ranges from 3nm at 560nm to 20nm at 1000nm, and the transmission efficiency of the filters is around 85%. Typical integration times used in the current prototype setup are between 2 and 10 miliseconds under halogen light illumination of 450 Watt. This indicates maximal frame rates can be achieved of up to 500fp.

Due to its integrated filter design and high spectral filter efficiency, imec's solution can obtain scanning speeds that are compatible with real industrial requirements. The speed of the demonstrated system corresponds to an equivalent speed of 2,000 lines per second, significantly exceeding current state-of-the-art hyperspectral sensors. Moreover, imec's technology can be adopted to a range of industrial vision applications. To match to specific application requirements, the image sensor can be selected (a commercially available sensor or even a custom-designed sensor), determining pixels sizes, maximal frame rate, etc. The hyperspectral filter can be tuned by changing the number of spectral bands and their spectral resolution.

Imec's prototype hyperspectral camera can capture all relevant data enabling automatic classification of different objects using state-of-the-art image processing methods. Classification results of imec's solution are equivalent to state-of-the-art hyperspectral references and recorded spectra of, for example, plant material.

####

About IMEC
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China, India and Japan. Its staff of about 1,900 people includes more than 500 industrial residents and guest researchers. In 2010, imec's revenue (P&L) was 285 million euro. Further information on imec can be found at www.imec.be.

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.) and imec India (Imec India Private Limited).

For more information, please click here

Contacts:
Hanne Degans
External Communications Officer
T: +32 16 28 17 69
Mobile: +32 486 065 175


Barbara Kalkis
Maestro Marketing & PR
T: +1 408 996 9975
M: +1 408 529 4210

Copyright © IMEC

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Imaging

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Announcements

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Tools

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Events/Classes

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices for Edge Computing at ISSCC: Leti’s Chief Scientist Presents Optimistic Vision for Neuromorphic Hardware and Ultra-Low-Power Microdevices That Are Based on Novel Emerging February 13th, 2018

Leti Chief Scientist Barbara De Salvo Will Help Kick Off ISSCC 2018 with Opening-Day Keynote: In Addition, Leti Scientists Will Present and Demo New Technology for Piezoelectric Energy Harvesting February 8th, 2018

Leti Presents Optical-Equipment Curving Technology that Improves Performance, Cuts Costs: ‘Disruptive Approach’ for Imaging Applications Presented in Paper At Photonics West and Demonstrated in Leti’s Booth February 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project