Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stain Your Brain: Nanoparticles Enable Brain Surgery

Image: dream designs / FreeDigitalPhotos.net
Image: dream designs / FreeDigitalPhotos.net

Abstract:
by Adrian Miller

Brain surgery is hard. Proverbially hard, in fact (writing this article might need a bit of thought, but, you know, it's not brain surgery). One of the most difficult parts for operating surgeons is distinguishing the tumorous growth from healthy brain tissue - the more precisely delineated the tumor is, the better the chances for a successful operation and recovery. Now, researchers have announced new work on a new system, using dye-loading nanoparticles, which could have a major impact on the success of brain surgery.

Stain Your Brain: Nanoparticles Enable Brain Surgery

Germany | Posted on January 20th, 2012

The most common current method to delineate between tumor and brain tissue is to use images of the brain taken before the operation begins - while this helps to guide the operating surgeon (who can also call on their ability to distinguish the tumor on sight), cancerous tissue can be completely indistinguishable from healthy brain tissue.

Early efforts to improve this basic method include the use of imaging systems during the surgery - which can distract the surgeon from the task at hand, by splitting their attention between the monitor and the patient, and which also call for high-cost, complex equipment - and the use of fluorescence tagging of brain tumors, raising the terrifying possibility of doctors performing this complex operation in the dark!

That's where Professor Raol Kopelman's University of Michigan research team come in - deciding that these current methods just won't cut it, they've developed a new system that uses dye-loaded nanoparticles to tag brain tumors for removal.

The Michigan team's system is designed to avoid the pitfalls of both these approaches - the use of a visible-light dye means no special detection equipment or lighting conditions are necessary. However, it is not without its own pitfalls - when the team published their initial findings in 2009, they reported one major problem that potentially made in vivo application impossible. The nanoparticles were loaded with dye in such a way that they produced too much non-specific staining - they just wouldn't show the tumor clearly enough.

Move forward three years, and things are looking much more promising; the combination of a new, covalently linkable dye derivative, a better nanoparticle synthesis procedure, and the introduction of PEG crosslinkers to improve stability in blood have resulted in a fair more stable system. Tests, both in vitro and in vivo, found no dye leaching, and tumors remain stained for long periods of time. One suspects that, although there may be some stops along the way, the final destination of this method will be the operating theater.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

R. Kopelman et al., Small ; DOI: 10.1002/smll.201101607

Related News Press

News and information

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Imaging

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Cambridge Nanotherm partners with Inabata for global sales and distribution June 20th, 2017

GLOBALFOUNDRIES Launches 7nm ASIC Platform for Data Center, Machine Learning, and 5G Networks FX-7TM offering leverages the company’s 7nm: FinFET process to deliver best in class IP and Solutions June 13th, 2017

The Zeiss Global Centre in the School of Engineering at the University of Portsmouth uses Deben µXCT stages to characterise the structural competence of biological structures June 13th, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Discoveries

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Enhanced photocatalytic activity by Cu2O nanoparticles integrated H2Ti3O7 nanotubes June 21st, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tiny bubbles provide tremendous propulsion in new microparticles research-Ben-Gurion U. June 21st, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project