Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Down to the wire: Silicon links shrink to atomic scale: Silicon links shrink to atomic scale

Michelle Simmons and Bent Weber from UNSW
Michelle Simmons and Bent Weber from UNSW

Abstract:
- The narrowest conducting wires in silicon ever produced are shown to have the same electrical current carrying capability as copper, as published in Science. - This means electrical interconnects in silicon can be shrunk to the atomic-scale without losing their functionality - Ohm's law holds true at the atomic-scale. - UNSW researchers will use these wires to address individual atoms - a key step in realising a scalable quantum computer.

Down to the wire: Silicon links shrink to atomic scale: Silicon links shrink to atomic scale

Sydney, Australia | Posted on January 7th, 2012

The narrowest conducting wires in silicon ever made - just four atoms wide and one atom tall - have been shown to have the same electrical current carrying capability of copper, according to a new study published today in the journal Science.

Despite their astonishingly tiny diameter - 10,000 times thinner than a human hair - these wires have exceptionally good electrical properties, raising hopes they will serve to connect atomic-scale components in the quantum computers of tomorrow.

"Interconnecting wiring of this scale will be vital for the development of future atomic-scale electronic circuits," says the lead author of the study, Bent Weber, a PhD student in the ARC Centre of Excellence for Quantum Computation and Communication Technology at the University of New South Wales, in Sydney, Australia.

The wires were made by precisely placing chains of phosphorus atoms within a silicon crystal, according to the study, which includes researchers from the University of Melbourne and Purdue University in the US.

The researchers discovered that the electrical resistivity of their wires - a measure of the ease with which electrical current can flow - does not depend on the wire width. Their behaviour is described by Ohm's law, which is a fundamental law of physics taught to every high school student.

"It is extraordinary to show that such a basic law still holds even when constructing a wire from the fundamental building blocks of nature - atoms," says Weber.

The discovery demonstrates that electrical interconnects in silicon can shrink to atomic dimensions without loss of functionality, says the Centre's Director and leader of the research, Professor Michelle Simmons.

"Driven by the semiconductor industry, computer chip components continuously shrink in size allowing ever smaller and more powerful computers," Simmons says.

"Over the past 50 years this paradigm has established the microelectronics industry as one of the key drivers for global economic growth. A major focus of the Centre of Excellence at UNSW is to push this technology to the next level to develop a silicon-based quantum computer, where single atoms serve as the individual units of computation," she says.

"It will come down to the wire. We are on the threshold of making transistors out of individual atoms. But to build a practical quantum computer we have recognised that the interconnecting wiring and circuitry also needs to shrink to the atomic scale."

Creating such tiny components has been made possible using a technique called scanning tunnelling microscopy. "This technique not only allows us to image individual atoms but also to manipulate them and place them in position," says Weber.

####

About University of New South Wales
The University of New South Wales is one of Australia’s leading research and teaching universities, ranked in the top 50 universities worldwide and renowned for the quality of its graduates.

UNSW is a founding member of the prestigious Group of Eight - a coalition of Australia’s leading research intensive universities.

Recognised as one of the heavyweights of Australian higher education, UNSW consistently scores highly in a range of national and international rankings.

For more information, please click here

Contacts:
Professor Michelle Simmons
61-425-336-756

UNSW Media Office
Mary O'Malley
61-438-881-124

Copyright © University of New South Wales

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Videos/Movies

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Novel nanoparticle made of common mineral may help keep tumor growth at bay February 4th, 2016

New invention revolutionizes heat transport February 1st, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Chip Technology

A metal that behaves like water: Researchers describe new behaviors of graphene February 12th, 2016

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Quantum Computing

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

New invention revolutionizes heat transport February 1st, 2016

A new quantum approach to big data January 25th, 2016

Nanoelectronics

Silicon chip with integrated laser: Light from a nanowire: Nanolaser for information technology February 12th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Spin dynamics in an atomically thin semi-conductor February 1st, 2016

Discoveries

'Lasers rewired': Scientists find a new way to make nanowire lasers: Berkeley Lab, UC Berkeley scientists adapt next-gen solar cell materials for a different purpose February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Announcements

Graphene leans on glass to advance electronics: Scientists' use of common glass to optimize graphene's electronic properties could improve technologies from flat screens to solar cells February 12th, 2016

Breaking cell barriers with retractable protein nanoneedles: Adapting a bacterial structure, Wyss Institute researchers develop protein actuators that can mechanically puncture cells February 12th, 2016

Replacement of Toxic Antibacterial Agents Possible by Biocompatible Polymeric Nanocomposites February 12th, 2016

Properties of Polymeric Nanofibers Optimized to Treat Damaged Body Tissues February 12th, 2016

Tools

Scientists take nanoparticle snapshots February 10th, 2016

Making sense of metallic glass February 9th, 2016

Chiral magnetic effect generates quantum current: Separating left- and right-handed particles in a semi-metallic material produces anomalously high conductivity February 8th, 2016

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic