Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UCLA physicists report nanotechnology feat with proteins

Giovanni Zocchi in his lab
Giovanni Zocchi in his lab

Abstract:
UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

UCLA physicists report nanotechnology feat with proteins

Los Angeles, CA | Posted on December 17th, 2011

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid. "Proteins are the molecular machines of life, the molecules we are made of," Zocchi said. "We have found that sometimes they behave as a solid and sometimes as a liquid.

"Solids have a shape while liquids flow for simple materials at low stresses. However, for complex materials, or large stresses, the behavior can be in-between. Subjected to mechanical forces, a material might be elastic and store mechanical energy (simple solid), viscous and dissipate mechanical energy (simple fluid), or visco-elastic and both store and dissipate mechanical energy (complex solid, complex fluid). The viscoelastic behavior characteristic of more complex matter had not been clearly seen before on isolated proteins because mechanical measurements tend to destroy the proteins."

Zocchi and Wang's new nanotechnology method allowed them to apply stresses and probe the mechanics of the protein without destroying it. Wang, now a physics postdoctoral fellow at the University of Illinois in Urbana-Champaign, and Zocchi discovered a "transition to a viscoelastic regime in the mechanical response" of the protein.

"Below the transition, the protein responds elastically, like a spring," Zocchi said. "Above the transition, the protein flows like a viscous liquid. However, the transition is reversible if the stress is removed. Functional conformational changes of enzymes (changes in the shape of the molecule) must typically operate across this transition."

The measurements were performed on the enzyme guanylate kinase, or GK, a member of an essential class of enzymes called kinases. Specifically, GK transfers a phosphate group from ATP (the universal "fuel" of the cell) to GMP, producing GDP, an essential metabolic component, Zocchi said.

The study on the characterization of the "visco-elastic transition" is reported this month in the online journal PLoS ONE, a publication of the Public Library of Science. The research was federally funded by the National Science Foundation's division of materials research and by a grant from the University of California Lab Research Program.

Zocchi and Wang published related findings earlier this year in the journal Europhysics Letters, a publication of the European Physical Society, and the journal Physical Review Letters.

In previous research, Zocchi and colleagues reported a significant step in controlling chemical reactions mechanically last year, made a significant step toward a new approach to protein engineering in 2006, created a mechanism at the nanoscale to externally control the function and action of a protein in 2005, and created a first-of-its-kind nanoscale sensor using a single molecule less than 20 nanometers long in 2003. A nanometer is roughly 2,000 times smaller than the width of a human hair.

####

About UCLA
UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more information, please click here

Contacts:
Stuart Wolpert

310-206-0511

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Terabyte Photonic Dataset Sale July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Physics

Flexible Metamaterial Absorbers July 29th, 2014

Imaging

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

New imaging agent provides better picture of the gut July 25th, 2014

Molecular Machines

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Terabyte Photonic Dataset Sale July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE