Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > UCLA physicists report nanotechnology feat with proteins

Giovanni Zocchi in his lab
Giovanni Zocchi in his lab

Abstract:
UCLA physicists have made nanomechanical measurements of unprecedented resolution on protein molecules.

UCLA physicists report nanotechnology feat with proteins

Los Angeles, CA | Posted on December 17th, 2011

The new measurements, by UCLA physics professor Giovanni Zocchi and former UCLA physics graduate student Yong Wang, are approximately 100 times higher in resolution than previous mechanical measurements, a nanotechnology feat which reveals an isolated protein molecule, surprisingly, is neither a solid nor a liquid. "Proteins are the molecular machines of life, the molecules we are made of," Zocchi said. "We have found that sometimes they behave as a solid and sometimes as a liquid.

"Solids have a shape while liquids flow for simple materials at low stresses. However, for complex materials, or large stresses, the behavior can be in-between. Subjected to mechanical forces, a material might be elastic and store mechanical energy (simple solid), viscous and dissipate mechanical energy (simple fluid), or visco-elastic and both store and dissipate mechanical energy (complex solid, complex fluid). The viscoelastic behavior characteristic of more complex matter had not been clearly seen before on isolated proteins because mechanical measurements tend to destroy the proteins."

Zocchi and Wang's new nanotechnology method allowed them to apply stresses and probe the mechanics of the protein without destroying it. Wang, now a physics postdoctoral fellow at the University of Illinois in Urbana-Champaign, and Zocchi discovered a "transition to a viscoelastic regime in the mechanical response" of the protein.

"Below the transition, the protein responds elastically, like a spring," Zocchi said. "Above the transition, the protein flows like a viscous liquid. However, the transition is reversible if the stress is removed. Functional conformational changes of enzymes (changes in the shape of the molecule) must typically operate across this transition."

The measurements were performed on the enzyme guanylate kinase, or GK, a member of an essential class of enzymes called kinases. Specifically, GK transfers a phosphate group from ATP (the universal "fuel" of the cell) to GMP, producing GDP, an essential metabolic component, Zocchi said.

The study on the characterization of the "visco-elastic transition" is reported this month in the online journal PLoS ONE, a publication of the Public Library of Science. The research was federally funded by the National Science Foundation's division of materials research and by a grant from the University of California Lab Research Program.

Zocchi and Wang published related findings earlier this year in the journal Europhysics Letters, a publication of the European Physical Society, and the journal Physical Review Letters.

In previous research, Zocchi and colleagues reported a significant step in controlling chemical reactions mechanically last year, made a significant step toward a new approach to protein engineering in 2006, created a mechanism at the nanoscale to externally control the function and action of a protein in 2005, and created a first-of-its-kind nanoscale sensor using a single molecule less than 20 nanometers long in 2003. A nanometer is roughly 2,000 times smaller than the width of a human hair.

####

About UCLA
UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 337 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more information, please click here

Contacts:
Stuart Wolpert

310-206-0511

Copyright © UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Imaging

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Physics

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

Superfast light source made from artificial atom April 28th, 2016

Physicists detect the enigmatic spin momentum of light April 26th, 2016

Molecular Machines

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Physicists build engine consisting of one atom: World's smallest heat engine uses just a single particle April 17th, 2016

Revealing the fluctuations of flexible DNA in 3-D: First-of-their-kind images by Berkeley Lab-led research team could aid in use of DNA to build nanoscale devices March 31st, 2016

Discoveries

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Nanobiotechnology

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic