Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Biocompatible graphene transistor array reads cellular signals: Novel nanocarbon platform shows potential for future bioelectronic implants

This combination of optical microscopy and fluorescence imaging shows a layer of biological cells covering a graphene-based transistor array. The experimental device, created by scientists from the Technische Universitaet Muenchen and the Juelich Research Center, is the first of its kind to prove capable of recording signals generated by living cells, with good spatial and temporal resolution. With this demonstration, the researchers have opened the way to further investigation of the feasibility of using graphene-based bioelectronics for potential future applications such as neuroprosthetic implants in the brain, the eye, or the ear.

Credit: Copyright TU Muenchen
This combination of optical microscopy and fluorescence imaging shows a layer of biological cells covering a graphene-based transistor array. The experimental device, created by scientists from the Technische Universitaet Muenchen and the Juelich Research Center, is the first of its kind to prove capable of recording signals generated by living cells, with good spatial and temporal resolution. With this demonstration, the researchers have opened the way to further investigation of the feasibility of using graphene-based bioelectronics for potential future applications such as neuroprosthetic implants in the brain, the eye, or the ear.

Credit: Copyright TU Muenchen

Abstract:
Researchers have demonstrated, for the first time, a graphene-based transistor array that is compatible with living biological cells and capable of recording the electrical signals they generate. This proof-of-concept platform opens the way for further investigation of a promising new material. Graphene's distinctive combination of characteristics makes it a leading contender for future biomedical applications requiring a direct interface between microelectronic devices and nerve cells or other living tissue. A team of scientists from the Technische Universitaet Muenchen and the Juelich Research Center published the results in the journal Advanced Materials.

Biocompatible graphene transistor array reads cellular signals: Novel nanocarbon platform shows potential for future bioelectronic implants

Garching, Germany | Posted on November 30th, 2011

Today, if a person has an intimate and dependent relationship with an electronic device, it's most likely to be a smart phone; however, much closer connections may be in store in the foreseeable future. For example, "bioelectronic" applications have been proposed that would place sensors and in some cases actuators inside a person's brain, eye, or ear to help compensate for neural damage. Pioneering research in this direction was done using the mature technology of silicon microelectronics, but in practice that approach may be a dead end: Both flexible substrates and watery biological environments pose serious problems for silicon devices; in addition, they may be too "noisy" for reliable communication with individual nerve cells.

Of the several material systems being explored as alternatives, graphene - essentially a two-dimensional sheet of carbon atoms linked in a dense honeycomb pattern - seems very well suited to bioelectronic applications: It offers outstanding electronic performance, is chemically stable and biologically inert, can readily be processed on flexible substrates, and should lend itself to large-scale, low-cost fabrication. The latest results from the TUM-Juelich team confirm key performance characteristics and open the way for further advances toward determining the feasibility of graphene-based bioelectronics.

The experimental setup reported in Advanced Materials began with an array of 16 graphene solution-gated field-effect transistors (G-SGFETs) fabricated on copper foil by chemical vapor deposition and standard photolithographic and etching processes. "The sensing mechanism of these devices is rather simple," says Dr. Jose Antonio Garrido, a member of the Walter Schottky Institute at TUM. "Variations of the electrical and chemical environment in the vicinity of the FET gate region will be converted into a variation of the transistor current."

Directly on top of this array, the researchers grew a layer of biological cells similar to heart muscle. Not only were the "action potentials" of individual cells detectable above the intrinsic electrical noise of the transistors, but these cellular signals could be recorded with high spatial and temporal resolution. For example, a series of spikes separated by tens of milliseconds moved across the transistor array in just the way action potentials could be expected to propagate across the cell layer. Also, when the cell layer was exposed to a higher concentration of the stress hormone norepinephrine, a corresponding increase in the frequency of spikes was recorded. Separate experiments to determine the inherent noise level of the G-SFETs showed it to be comparable to that of ultralow-noise silicon devices, which as Garrido points out are the result of decades of technological development.

"Much of our ongoing research is focused on further improving the noise performance of graphene devices," Garrido says, "and on optimizing the transfer of this technology to flexible substrates such as parylene and kapton, both of which are currently used for in vivo implants. We are also working to improve the spatial resolution of our recording devices." Meanwhile, they are working with scientists at the Paris-based Vision Institute to investigate the biocompatibility of graphene layers in cultures of retinal neuron cells, as well as within a broader European project called NEUROCARE, which aims at developing brain implants based on flexible nanocarbon devices.

This research is supported by the German Research Foundation (DFG) within Priority Program 1459 "Graphene," the International Helmholtz Research School BioSoft, the Bavarian Graduate School CompInt, the TUM Institute for Advanced Study, and the Nanosystems Initiative Munich (NIM).

Original publication: Graphene Transistor Arrays for Recording Action Potentials from Electrogenic Cells; Lucas H. Hess, Michael Jansen, Vanessa Maybeck, Moritz V. Hauf, Max Seifert, Martin Stutzmann, Ian D. Sharp, Andreas Offenhaeusser, and Jose A. Garrido. Advanced Materials 2011, 23, 5045-5049. DOI: 10.1002/adma.201102990.

####

About Technische Universitaet Muenchen
Technische Universitaet Muenchen (TUM) is one of Europe's leading universities. It has roughly 460 professors, 9000 academic and non-academic staff, and 31,500 students. It focuses on the engineering sciences, natural sciences, life sciences, medicine, and economic sciences. After winning numerous awards, it was selected as an "Elite University" in 2006 by the Science Council (Wissenschaftsrat) and the German Research Foundation (DFG). The university's global network includes an outpost with a research campus in Singapore. TUM is dedicated to the ideal of a top-level research-based entrepreneurial university.

For more information, please click here

Contacts:
Patrick Regan

49-892-891-0515

Dr. J. A. Garrido
Walter Schottky Institute
Technische Universitaet Muenchen
Am Coulombwall 4
85748 Garching, Germany
Tel: +49 89 289 12766
E-mail:
Home page: www.wsi.tum.de

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Imaging

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

News and information

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

Graphene

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Brain-Computer Interfaces

On the frontiers of cyborg science August 10th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Noninvasive brain control: New light-sensitive protein enables simpler, more powerful optogenetics June 30th, 2014

Stanford scientists create circuit board modeled on the human brain April 28th, 2014

Chip Technology

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Discoveries

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Tools

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE