Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotribology: Tubular probes: Short, capped single-walled carbon nanotubes may serve as ideal probing tips to study friction, lubrication and wear at the microscale

Atomistic simulations show that short, capped single-walled carbon nanotubes (red) can elucidate the tribological properties of graphene surfaces
Copyright : 2011 Elsevier
Atomistic simulations show that short, capped single-walled carbon nanotubes (red) can elucidate the tribological properties of graphene surfaces

Copyright : 2011 Elsevier

Abstract:
Studying microscopic interactions at single asperities is vital for the understanding of friction and lubrication at the macroscale. Surface probe instruments with carbon nanotube tips may enable such investigations, as now demonstrated in a theoretical study led by Ping Liu and Yong-Wei Zhang at the A*STAR Institute of High Performance Computing1. The researchers showed that short, single-walled, capped carbon nanotubes are able to capture the frictional characteristics of graphene with atomic resolution.

Nanotribology: Tubular probes: Short, capped single-walled carbon nanotubes may serve as ideal probing tips to study friction, lubrication and wear at the microscale

Singapore | Posted on November 29th, 2011

"For an ideal probing tip, its dimension should be as small as possible, its rigidity should be as large as possible, its geometry should be well-defined, and it should be chemically inert," explains Liu. The combination of such characteristics would allow surface characterization with atomic resolution while ensuring a long lifetime and geometrical, chemical and physical stability of the tip.

Carbon nanotubes, in particular short ones, are of great interest due to their inherent strong carbon-carbon bonds, which allows them to withstand buckling and bending deformation and recover to their original shape after deformation. Capped tubes in turn offer improved chemical stability and stiffness in comparison to non-capped tubes. These considerations indicate that short, capped single-walled carbon nanotubes may be ideal imaging probe tips.

As it is not yet possible to use such tips in experimental setups, to test this hypothesis Liu and Zhang performed large-scale atomistic simulations focusing on the interaction between such nanotube probing tips and graphene (see image)—a carbon material that is ideal for surface coating lubrication. "Because of advances in the development of accurate atomic potentials and massive parallel computing algorithms, atomistic simulations not only enable us to determine the probing characteristics of such tips, but also to investigate the frictional and defect characteristics of graphene with atomic resolution," says Liu.

The simulations could capture the dependence of the friction and average normal forces on tip-to-surface distance and number of graphene layers. The researchers analyzed and interpreted the observed characteristics in terms of different types of sliding motions of the tip across the surface, as well as energy dissipation mechanisms between the tip and underlying graphene layers. They could further identify clear signatures that distinguish the motion of a tip across a point defect or the so-called Stone-Thrower-Wales defect, which is thought to be responsible for nanoscale plasticity and brittle-ductile transitions in the graphene carbon lattice. "Our simulations provide insight into nanoscale friction and may provide guidelines on how to control it," says Liu.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing.

####

For more information, please click here

Copyright © The Agency for Science, Technology and Research (A*STAR)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Institute of High Performance Computing:

Research Article in Carbon:

Related News Press

News and information

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Graphene

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Imaging

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

Bruker-Sponsored Sixth AFM BioMed Conference Highlights Increasing Impact of AFM in Biological Applications February 26th, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Discoveries

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Moving molecule writes letters: Caging of molecules allows investigation of equilibrium thermodynamics February 27th, 2015

Announcements

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

Tools

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

Real-time observation of bond formation by using femtosecond X-ray liquidography February 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE