Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Printed Protection: Low-cost Paper-based Wireless Sensor Could Help Detect Explosive Devices

Sensor3 -- Pictured here are three wireless devices that use carbon nanotubes (CNTs) to achieve high sensitivity to ammonia. At left is a patch antenna, inkjet-printed on photographic paper, with the CNTs shown in black. At top center is an omni-directional segmented loop antenna on a soft substrate, designed for potential 5.8 GHz RFID integration. At bottom right is an inter-digitated capacitor on silicon substrate with CNT loading across the electrodes, being tested for its DC resistance. (Georgia Tech Photo: Gary Meek)
Sensor3 -- Pictured here are three wireless devices that use carbon nanotubes (CNTs) to achieve high sensitivity to ammonia. At left is a patch antenna, inkjet-printed on photographic paper, with the CNTs shown in black. At top center is an omni-directional segmented loop antenna on a soft substrate, designed for potential 5.8 GHz RFID integration. At bottom right is an inter-digitated capacitor on silicon substrate with CNT loading across the electrodes, being tested for its DC resistance.

(Georgia Tech Photo: Gary Meek)

Abstract:
Researchers at the Georgia Institute of Technology have developed a prototype wireless sensor capable of detecting trace amounts of a key ingredient found in many explosives.

Printed Protection: Low-cost Paper-based Wireless Sensor Could Help Detect Explosive Devices

Atlanta, GA | Posted on October 26th, 2011

The device, which employs carbon nanotubes and is printed on paper or paper-like material using standard inkjet technology, could be deployed in large numbers to alert authorities to the presence of explosives, such as improvised explosive devices (IEDs).

"This prototype represents a significant step toward producing an integrated wireless system for explosives detection," said Krishna Naishadham, a principal research scientist who is leading the work at the Georgia Tech Research Institute (GTRI). "It incorporates a sensor and a communications device in a small, low-cost package that could operate almost anywhere."

Other types of hazardous gas sensors are based on expensive semiconductor fabrication and gas chromatography, Naishadham said, and they consume more power, require human intervention, and typically do not operate at ambient temperatures. Furthermore, those sensors have not been integrated with communication devices such as antennas.

The wireless component for communicating the sensor information -- a resonant lightweight antenna - was printed on photographic paper using inkjet techniques devised by Professor Manos Tentzeris of Georgia Tech's School of Electrical and computer engineering. Tentzeris is collaborating with Naishadham on development of the sensing device.

The sensing component, based on functionalized carbon nanotubes (CNTs), has been fabricated and tested for detection sensitivity by Xiaojuan (Judy) Song, a GTRI research scientist. The device relies on carbon-nanotube materials optimized by Song.

A presentation on this sensing technology was given in July at the IEEE Antennas and Propagation Symposium (IEEE APS) in Spokane, Wash., by Hoseon Lee, a Ph.D. student in ECE co-advised by Tentzeris and Naishadham. The paper received the Honorable Mention Award in the Best Student Paper competition at the symposium.

This is not the first inkjet-printed ammonia sensor that has been integrated with an antenna on paper, said Tentzeris. His group produced a similar integrated sensor last year in collaboration with the research group of C.P. Wong, who is Regents professor and Smithgall Institute Endowed Chair in the School of Materials Science and Engineering at Georgia Tech.

"The fundamental difference is that this newest CNT sensor possesses dramatically improved sensitivity to miniscule ammonia concentrations," Tentzeris said. "That should enable the first practical applications to detect trace amounts of hazardous gases in challenging operational environments using inkjet-printed devices."

Tentzeris explained that the key to printing components, circuits and antennas lies in novel "inks" that contain silver nanoparticles in an emulsion that can be deposited by the printer at low temperatures - around 100 degrees Celsius. A process called sonication helps to achieve optimal ink viscosity and homogeneity, enabling uniform material deposition and permitting maximum operating effectiveness for paper-based components.

"Ink-jet printing is low-cost and convenient compared to other technologies such as wet etching," Tentzeris said. "Using the proper inks, a printer can be used almost anywhere to produce custom circuits and components, replacing traditional clean-room approaches."

Low-cost materials - such as heavy photographic paper or plastics like polyethylene terephthalate -- can be made water resistant to ensure greater reliability, he added. Inkjet component printing can also use flexible organic materials, such as liquid crystal polymer (LCP), which are known for their robustness and weather resistance. The resulting components are similar in size to conventional components but can conform and adhere to almost any surface.

Naishadham explained that the same inkjet techniques used to produce RF components, circuits and antennas can also be used to deposit the functionalized carbon nanotubes used for sensing. These nanoscale cylindrical structures -- about one-billionth of a meter in diameter, or 1/50,000th the width of a human hair -- are functionalized by coating them with a conductive polymer that attracts ammonia, a major ingredient found in many IEDs.

Sonication of the functionalized carbon nanotubes produces a uniform water-based ink that can be printed side-by-side with RF components and antennas to produce a compact wireless sensor node.

"The optimized carbon nanotubes are applied as a sensing film, with specific functionalization designed for a particular gas or analyte," Song said. "The GTRI sensor detects trace amounts of ammonia usually found near explosive devices, and it can also be designed to detect similar gases in household, healthcare and industrial environments at very low concentration levels."

The sensor has been designed to detect ammonia in trace amounts - as low as five parts per million, Naishadham said.

The resulting integrated sensing package can potentially detect the presence of trace explosive materials at a distance, without endangering human lives. This approach, called standoff detection, involves the use of RF technology to identify explosive materials at a relatively safe distance. The GTRI team has designed the device to send an alert to nearby personnel when it detects ammonia.

The wireless sensor nodes require relatively low power, which could come from a number of technologies including thin-film batteries, solar cells or power-scavenging and energy-harvesting techniques. In collaboration with Tentzeris's and Wong's groups, GTRI is investigating ways to make the sensor operate passively, without any power consumption.

"We are focusing on providing standoff detection for those engaged in military or humanitarian missions and other hazardous situations," Naishadham said. "We believe that it will be possible, and cost-effective, to deploy large numbers of these detectors on vehicles or robots throughout a military engagement zone."

Writer: Rick Robinson

####

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA

Kirk Englehardt
404-407-7280


John Toon
404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Thin films

Rice University chemists make laser-induced graphene from wood July 31st, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Sensors

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single ‘solitons’ promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Enhancing the sensing capabilities of diamonds with quantum properties: A simple method can give diamonds the special properties needed for quantum applications such as sensing magnetic fields September 24th, 2017

Discoveries

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Announcements

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Homeland Security

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Military

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

A dash of gold improves microlasers: The precious metal provides a 'nano' solution for improving disease detection, defense and cybersecurity applications October 9th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

On the road to fire-free, lithium-ion batteries made with asphalt October 12th, 2017

Organic/inorganic sulfur may be key for safe rechargeable lithium batteries October 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

A revolution in lithium-ion batteries is becoming more realistic September 5th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Printing/Lithography/Inkjet/Inks/Bio-printing

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

Meniscus-assisted technique produces high efficiency perovskite PV films July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project