Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Nano Materials by Design: No Small Breakthrough: Design rules will enable scientists to build desired nanomaterials for broad application of nanotechnology to address social challenges, bolstering industry and creating jobs

Chad Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering at Northwestern University and director of its International Institute for Nanotechnology. He also sits on the President's Council of Advisors on Science and Technology (PCAST).

Credit: Northwestern University
Chad Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering at Northwestern University and director of its International Institute for Nanotechnology. He also sits on the President's Council of Advisors on Science and Technology (PCAST).

Credit: Northwestern University

Abstract:
Learning the rules for consistently arranging nanoparticles, like nature arranges atoms into molecules and materials, has been a goal of scientists for quite some time because doing so is essential to capitalize on nanotechnology's potential for broad application. This challenge has now been met for a class of materials.



In an interview on October 10, 2011, Northwestern University Professor Chad Mirkin was asked, "What have you discovered and why is it important?" This discovery by Mirkin and his team is described in the October 14, 2011 issue of the journal Science.

Nano Materials by Design: No Small Breakthrough: Design rules will enable scientists to build desired nanomaterials for broad application of nanotechnology to address social challenges, bolstering industry and creating jobs

Arlington, VA | Posted on October 13th, 2011

The discovery is detailed in the Oct. 14, 2011 issue of the journal Science and in news released by Northwestern University today. The National Science Foundation (NSF) funds the research.

Specifically, lead author Chad Mirkin of Northwestern University and his team developed rules that enable scientists to make any structure for almost any application.

"This discovery is the largely the result of high-risk, high reward funding of basic research, in NSF's Nanoscale Science and Engineering Centers" said Mihail C. Roco, senior advisor for nanotechnology at NSF, key architect of the National Nanotechnology Initiative and founding chair of the U.S. National Science and Technology Council's Subcommittee on Nanoscale Science, Engineering and Technology.

Roco continued, "In our 2003 National Nanotechnology Initiative report, we identified the efficient creation of nanomaterials with prescribed properties and functions as key to broad applicability of nanotechnology. With this discovery, Mirkin and his team have met that challenge for a large set of materials. The future is indeed bright for revolutionary new materials and systems and what they will bring to our daily life and to our economic livelihood--from innovative disease treatments, new information methods and more efficient energy conversion storage and use to the companies and jobs created in the process."

Watch and listen to Chad Mirkin as he discusses his discovery and its broad implications for the future of science.

Chad Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering at Northwestern University and director of its International Institute for Nanotechnology. He also sits on the President's Council of Advisors on Science and Technology.

####

About National Science Foundation
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2011, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

For more information, please click here

Contacts:
Media Contacts
Lisa-Joy Zgorski
NSF
(703) 292-8311


Megan Fellman
Northwestern University
(847) 491-3115


Program Contacts
Mihail C. Roco
NSF
(703) 292-7032


Principal Investigators
Chad Mirkin
Northwestern University
(847) 491-2907

Copyright © National Science Foundation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

NSF National Nanotechnology Initiative (NNI):

PCAST Report on the Third Assessment of the National Nanotechnology Initiative:

video2

video3

video4

video5

Related News Press

News and information

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

Videos/Movies

New Video Highlights Specific Topics Sought in Call for Papers for the 2019 IEEE International Electron Devices Meeting (IEDM) June 13th, 2019

DNA origami to scale-up molecular motors June 13th, 2019

Flexible generators turn movement into energy: Rice University's laser-induced graphene nanogenerators could power future wearables June 2nd, 2019

Chemists build a better cancer-killing drill: Rice U.-designed molecular motors get an upgrade for activation with near-infrared light May 29th, 2019

Jobs

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) March 29th, 2019

Arrowhead Pharmaceuticals Reports Inducement Grants under NASDAQ Marketplace Rule 5635(c)(4) December 18th, 2018

Graphene shows unique potential to exceed bandwidth demands of future telecommunications October 12th, 2018

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

A molecular glue to overcome cancer drug resistance? Small molecule drug may prevent chemotherapy resistance June 7th, 2019

Discoveries

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

Mysterious Majorana quasiparticle is now closer to being controlled for quantum computing: Princeton researchers detect a robust Majorana quasiparticle and show how it can be turned on and off June 14th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Materials/Metamaterials

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Laser technique could unlock use of tough material for next-generation electronics: Researchers make graphene tunable, opening up its band gap to a record 2.1 electronvolts May 30th, 2019

Building next gen smart materials with the power of sound May 28th, 2019

ZEN gets $1m grant for graphene-enhanced concrete project May 12th, 2019

Announcements

New record: 3D-printed optical-electronic integration June 18th, 2019

Can break junction techniques still offer quantitative information at single-molecule level June 18th, 2019

University of Konstanz researchers create uniform-shape polymer nanocrystals: Researchers from the University of Konstanz's CRC 1214 'Anisotropic Particles as Building Blocks: Tailoring Shape, Interactions and Structures' generate uniform-shape nanocrystals using direct polymeriz June 14th, 2019

Small currents for big gains in spintronics: A new low-power magnetic switching component could aid spintronic devices June 14th, 2019

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project