Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program
Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program

Abstract:
Two professors from the University of California, Riverside's Bourns College of Engineering have received $1.5 million to study a new approach that could allow the electronics industry to drastically reduce power consumption and increase speed in the next generation of computers.

Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Riverside, CA | Posted on September 26th, 2011

Alexander Balandin, a professor of electrical engineering and chair of the materials science and engineering program, and Roger Lake, a professor of electrical engineering, will work with John Stickney, a professor of chemistry at the University of Georgia. Balandin serves as a principal investigator for the overall project, coordinating experimental research in his laboratory with computational studies in Lake's group and materials growth activities in Stickney's group.

The money is awarded under the nation-wide Nanoelectronics for 2020 and Beyond competition. The researchers will receive $1.3 million in funding from the National Science Foundation and $200,000, as a gift, from the Nanoelectronics Research Initiative of the Semiconductor Research Corporation, a technology research consortium whose members include Intel, IBM and other high-tech leaders.

For 50 years, electronics have run on silicon transistor technology. Over those years, that technology has continually been scaled down to the point now further shrinkage is difficult. Continuing evolution of electronics beyond the limits of the conventional silicon technology requires innovative approaches for solving heat dissipation, speed and scaling issues.

Balandin and Lake believe they have found that innovative approach.

They plan to encode information not with conventional electrical currents, individual charges or spins but with the collective states formed by the charge-density waves.

Charge-density waves, also known as CDWs, are modulations in the electron density and associated modulations of the atom positions in crystal lattices of certain materials. They were known for almost a century but until today have not been considered for applications in computing. The use of collective states, or waves, instead of electrical currents of individual electrons can help to reduce the amount of power needed per computation.

"The idea of using charge-density waves for information processing is a bold one and presents an absolutely new approach for solving the scaling and heat dissipation problems in electronics," said Balandin, who received this year's Pioneer of Nanotechnology Award from the IEEE Nanotechnology Council.

The research to be carried out at UC Riverside will complement conventional silicon transistor technology. The charge-density wave materials can be integrated with silicon and other materials used in conventional computers. The prototype devices, which use the charge-density waves, have already been built in Balandin's Nano-Device Laboratory.

The phase, frequency and amplitude of the collective current of the interfering charge waves will encode information and allow for massive parallelism in information processing. The low-dissipation, massively parallel information processing with the collective state variables can satisfy the computational, communication, and sensor technology requirements for decades to come.

The paradigm proposed by Balandin and Lake has never been attempted before. Its major benefit is that it can be implemented at room temperature and does not require magnetic fields like other computational schemes do.

The project will lead to better understanding of the material properties and physical processes of charge-density wave materials in highly-scaled, low-dimension regimes that have not yet been explored. Among the outcomes of this research will be optimized device designs for exploiting charge-density waves for computations and understanding the fundamental limits of the performance metrics.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Alexander Balandin

Roger Lake

Bourns College of Engineering

Related News Press

News and information

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

Rutgers-Led Innovation Could Spur Faster, Cheaper, Nano-Based Manufacturing: Scalable and cost-effective manufacturing of thin film devices February 14th, 2018

Understanding brain functions using upconversion nanoparticles: Researchers can now send light deep into the brain to study neural activities February 14th, 2018

Chip Technology

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Liquid crystal molecules form nano rings: Quantized self-assembly enables design of materials with novel properties February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

Nanoelectronics

Graphene on toast, anyone? Rice University scientists create patterned graphene onto food, paper, cloth, cardboard February 13th, 2018

Vanadium dioxyde: A revolutionary material for tomorrow's electronics: Phase-chance switch can now be performed at higher temperatures February 5th, 2018

Measuring the temperature of two-dimensional materials at the atomic level February 3rd, 2018

Viewing atomic structures of dopant atoms in 3-D relating to electrical activity in a semiconductor December 28th, 2017

Announcements

Photonic chip guides single photons, even when there are bends in the road February 16th, 2018

Arrowhead Receives Regulatory Clearance to Begin Phase 1/2 Study of ARO-HBV for Treatment of Hepatitis B February 15th, 2018

Arrowhead Pharmaceuticals Receives Orphan Drug Designation for ARO-AAT February 15th, 2018

European & Korean Project To Demo World’s First 5G Platform During Winter Games February 15th, 2018

Energy

Round-the-clock power from smart bowties February 5th, 2018

Silk fibers could be high-tech ‘natural metamaterials’ January 31st, 2018

A simple new approach to plastic solar cells: Osaka University researchers intelligently design new highly efficient organic solar cells based on amorphous electronic materials with potential for easy printing January 28th, 2018

Nature paper by Schlumberger researchers used photothermal based nanoscale IR spectroscopy to analyze heterogeneous process of petroleum generation January 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project