Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program
Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program

Abstract:
Two professors from the University of California, Riverside's Bourns College of Engineering have received $1.5 million to study a new approach that could allow the electronics industry to drastically reduce power consumption and increase speed in the next generation of computers.

Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Riverside, CA | Posted on September 26th, 2011

Alexander Balandin, a professor of electrical engineering and chair of the materials science and engineering program, and Roger Lake, a professor of electrical engineering, will work with John Stickney, a professor of chemistry at the University of Georgia. Balandin serves as a principal investigator for the overall project, coordinating experimental research in his laboratory with computational studies in Lake's group and materials growth activities in Stickney's group.

The money is awarded under the nation-wide Nanoelectronics for 2020 and Beyond competition. The researchers will receive $1.3 million in funding from the National Science Foundation and $200,000, as a gift, from the Nanoelectronics Research Initiative of the Semiconductor Research Corporation, a technology research consortium whose members include Intel, IBM and other high-tech leaders.

For 50 years, electronics have run on silicon transistor technology. Over those years, that technology has continually been scaled down to the point now further shrinkage is difficult. Continuing evolution of electronics beyond the limits of the conventional silicon technology requires innovative approaches for solving heat dissipation, speed and scaling issues.

Balandin and Lake believe they have found that innovative approach.

They plan to encode information not with conventional electrical currents, individual charges or spins but with the collective states formed by the charge-density waves.

Charge-density waves, also known as CDWs, are modulations in the electron density and associated modulations of the atom positions in crystal lattices of certain materials. They were known for almost a century but until today have not been considered for applications in computing. The use of collective states, or waves, instead of electrical currents of individual electrons can help to reduce the amount of power needed per computation.

"The idea of using charge-density waves for information processing is a bold one and presents an absolutely new approach for solving the scaling and heat dissipation problems in electronics," said Balandin, who received this year's Pioneer of Nanotechnology Award from the IEEE Nanotechnology Council.

The research to be carried out at UC Riverside will complement conventional silicon transistor technology. The charge-density wave materials can be integrated with silicon and other materials used in conventional computers. The prototype devices, which use the charge-density waves, have already been built in Balandin's Nano-Device Laboratory.

The phase, frequency and amplitude of the collective current of the interfering charge waves will encode information and allow for massive parallelism in information processing. The low-dissipation, massively parallel information processing with the collective state variables can satisfy the computational, communication, and sensor technology requirements for decades to come.

The paradigm proposed by Balandin and Lake has never been attempted before. Its major benefit is that it can be implemented at room temperature and does not require magnetic fields like other computational schemes do.

The project will lead to better understanding of the material properties and physical processes of charge-density wave materials in highly-scaled, low-dimension regimes that have not yet been explored. Among the outcomes of this research will be optimized device designs for exploiting charge-density waves for computations and understanding the fundamental limits of the performance metrics.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Alexander Balandin

Roger Lake

Bourns College of Engineering

Related News Press

News and information

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Chip Technology

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Nanoelectronics

Bit data goes anti-skyrmions September 1st, 2017

Ames Laboratory scientists move graphene closer to transistor applications August 30th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Announcements

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Energy

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project