Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program
Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program

Abstract:
Two professors from the University of California, Riverside's Bourns College of Engineering have received $1.5 million to study a new approach that could allow the electronics industry to drastically reduce power consumption and increase speed in the next generation of computers.

Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Riverside, CA | Posted on September 26th, 2011

Alexander Balandin, a professor of electrical engineering and chair of the materials science and engineering program, and Roger Lake, a professor of electrical engineering, will work with John Stickney, a professor of chemistry at the University of Georgia. Balandin serves as a principal investigator for the overall project, coordinating experimental research in his laboratory with computational studies in Lake's group and materials growth activities in Stickney's group.

The money is awarded under the nation-wide Nanoelectronics for 2020 and Beyond competition. The researchers will receive $1.3 million in funding from the National Science Foundation and $200,000, as a gift, from the Nanoelectronics Research Initiative of the Semiconductor Research Corporation, a technology research consortium whose members include Intel, IBM and other high-tech leaders.

For 50 years, electronics have run on silicon transistor technology. Over those years, that technology has continually been scaled down to the point now further shrinkage is difficult. Continuing evolution of electronics beyond the limits of the conventional silicon technology requires innovative approaches for solving heat dissipation, speed and scaling issues.

Balandin and Lake believe they have found that innovative approach.

They plan to encode information not with conventional electrical currents, individual charges or spins but with the collective states formed by the charge-density waves.

Charge-density waves, also known as CDWs, are modulations in the electron density and associated modulations of the atom positions in crystal lattices of certain materials. They were known for almost a century but until today have not been considered for applications in computing. The use of collective states, or waves, instead of electrical currents of individual electrons can help to reduce the amount of power needed per computation.

"The idea of using charge-density waves for information processing is a bold one and presents an absolutely new approach for solving the scaling and heat dissipation problems in electronics," said Balandin, who received this year's Pioneer of Nanotechnology Award from the IEEE Nanotechnology Council.

The research to be carried out at UC Riverside will complement conventional silicon transistor technology. The charge-density wave materials can be integrated with silicon and other materials used in conventional computers. The prototype devices, which use the charge-density waves, have already been built in Balandin's Nano-Device Laboratory.

The phase, frequency and amplitude of the collective current of the interfering charge waves will encode information and allow for massive parallelism in information processing. The low-dissipation, massively parallel information processing with the collective state variables can satisfy the computational, communication, and sensor technology requirements for decades to come.

The paradigm proposed by Balandin and Lake has never been attempted before. Its major benefit is that it can be implemented at room temperature and does not require magnetic fields like other computational schemes do.

The project will lead to better understanding of the material properties and physical processes of charge-density wave materials in highly-scaled, low-dimension regimes that have not yet been explored. Among the outcomes of this research will be optimized device designs for exploiting charge-density waves for computations and understanding the fundamental limits of the performance metrics.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Alexander Balandin

Roger Lake

Bourns College of Engineering

Related News Press

News and information

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Light pulses control graphene's electrical behavior: Finding could allow ultrafast switching of conduction, and possibly lead to new broadband light sensors August 1st, 2014

President Obama Meets U.S. Laureates of 2014 Kavli Prizes August 1st, 2014

Stanford researchers seek 'Holy Grail' in battery design: Pure lithium anode closer to reality with development of protective layer of interconnected carbon domes August 1st, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Energy

Nanostructured metal-oxide catalyst efficiently converts CO2 to methanol: Highly reactive sites at interface of 2 nanoscale components could help overcome hurdle of using CO2 as a starting point in producing useful products July 31st, 2014

From Narrow to Broad July 30th, 2014

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE