Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program
Alex Balandin, a professor of electrical engineering and chair of the materials science and engineering program

Abstract:
Two professors from the University of California, Riverside's Bourns College of Engineering have received $1.5 million to study a new approach that could allow the electronics industry to drastically reduce power consumption and increase speed in the next generation of computers.

Bold Approach Could Change Electronics Industry Professors receive $1.5 million to study new idea that could drastically reduce power consumption and increase speed in the next generation of computers

Riverside, CA | Posted on September 26th, 2011

Alexander Balandin, a professor of electrical engineering and chair of the materials science and engineering program, and Roger Lake, a professor of electrical engineering, will work with John Stickney, a professor of chemistry at the University of Georgia. Balandin serves as a principal investigator for the overall project, coordinating experimental research in his laboratory with computational studies in Lake's group and materials growth activities in Stickney's group.

The money is awarded under the nation-wide Nanoelectronics for 2020 and Beyond competition. The researchers will receive $1.3 million in funding from the National Science Foundation and $200,000, as a gift, from the Nanoelectronics Research Initiative of the Semiconductor Research Corporation, a technology research consortium whose members include Intel, IBM and other high-tech leaders.

For 50 years, electronics have run on silicon transistor technology. Over those years, that technology has continually been scaled down to the point now further shrinkage is difficult. Continuing evolution of electronics beyond the limits of the conventional silicon technology requires innovative approaches for solving heat dissipation, speed and scaling issues.

Balandin and Lake believe they have found that innovative approach.

They plan to encode information not with conventional electrical currents, individual charges or spins but with the collective states formed by the charge-density waves.

Charge-density waves, also known as CDWs, are modulations in the electron density and associated modulations of the atom positions in crystal lattices of certain materials. They were known for almost a century but until today have not been considered for applications in computing. The use of collective states, or waves, instead of electrical currents of individual electrons can help to reduce the amount of power needed per computation.

"The idea of using charge-density waves for information processing is a bold one and presents an absolutely new approach for solving the scaling and heat dissipation problems in electronics," said Balandin, who received this year's Pioneer of Nanotechnology Award from the IEEE Nanotechnology Council.

The research to be carried out at UC Riverside will complement conventional silicon transistor technology. The charge-density wave materials can be integrated with silicon and other materials used in conventional computers. The prototype devices, which use the charge-density waves, have already been built in Balandin's Nano-Device Laboratory.

The phase, frequency and amplitude of the collective current of the interfering charge waves will encode information and allow for massive parallelism in information processing. The low-dissipation, massively parallel information processing with the collective state variables can satisfy the computational, communication, and sensor technology requirements for decades to come.

The paradigm proposed by Balandin and Lake has never been attempted before. Its major benefit is that it can be implemented at room temperature and does not require magnetic fields like other computational schemes do.

The project will lead to better understanding of the material properties and physical processes of charge-density wave materials in highly-scaled, low-dimension regimes that have not yet been explored. Among the outcomes of this research will be optimized device designs for exploiting charge-density waves for computations and understanding the fundamental limits of the performance metrics.

####

About University of California, Riverside
The University of California, Riverside (www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 20,500 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Graduate Center. The campus has an annual statewide economic impact of more than $1 billion.

For more information, please click here

Contacts:
Sean Nealon
Tel: (951) 827-1287

Copyright © University of California, Riverside

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Alexander Balandin

Roger Lake

Bourns College of Engineering

Related News Press

News and information

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel stapled peptide nanoparticle combination prevents RSV infection, study finds April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

'Life Redesigned: The Emergence of Synthetic Biology' Lecture at Brookhaven Lab on Wednesday, April 30: Biomedical Engineer James Collins to Speak for BSA Distinguished Lecture Series April 16th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

INSCX™ exchange to present Exchange trade reporting mechanism for engineered nanomaterials (NMs) to UK regulation agencies, insurers and upstream/downstream users April 17th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Energy

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE