Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fluorescent Clusters Provide Window into Live Cells

Abstract:
Important information about live cells' behavior and environment may be gained using a new, easy to make fluorescent gold nanocluster, say scientists in Germany and USA.

Fluorescent Clusters Provide Window into Live Cells

Germany | Posted on August 29th, 2011

Studying the behavior of live cells is vastly important to help us understand how our own cells react to changes in environment or invasion, and also to devise better ways to control and contain hostile microbes. To visualize the cells and their processes, labels of some sort are usually required; many of these are fluorescent and can be tracked using external microscopy. Such labels can be laborious to produce and their stability and biocompatibility are a primary concern. Recent advances in nanotechnology have given rise to a new class of fluorescent labels, fluorescent metal nanoclusters. These tiny clusters of metal are small and highly fluorescent and have particular electronic properties because of their size. Their stability can be severely affected by the choice of ligand that sits on the outside of the cluster.

Now, researchers at Karlsruhe Institute of Technology, Germany and University of Illinois in the USA, led by Professor Ulrich Nienhaus, have developed an easy way to make water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with a ligand called dihydrolipoic acid (DHLA). DHLA has two connection points (bidentate) to the cluster which helps to make the cluster extra stable. These Au NCs are highly stable, have bright near-infrared fluorescence emission, are very small, and very biocompatible, all of which makes them promising as novel fluorescent probes for application in biological research. The fluorescence lifetime of the clusters is approximately twice that of background cell fluorescence, so they could easily be visualized within or around a cell using fluorescence lifetime imaging (FLIM).

But the researchers did not stop there. Keen to show just how promising their ligand-stabilized clusters are, they visualized the internalization of the Au NCs by live HeLa cells using FLIM. This technique not only reveals the uptake of the Au NCs by the cells but also provides information about the changed local environment of the Au NCs on uptake through the cell membrane. Au NCs near the cell membrane have a longer fluorescence lifetime than those actually internalized by the cells.

The scientists anticipate that their fluorescent Au NCs will find wide application in biomedical research, including intracellular drug delivery, ultrasensitive molecular diagnostics, and image-guided therapy.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

L. Shang et al., Small ; DOI: 10.1002/smll.201100746

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Imaging

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Nanomedicine

Arrowhead Pharmaceuticals to Webcast Fiscal 2016 Year End Results December 7th, 2016

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Discoveries

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Research partnerships

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project