Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fluorescent Clusters Provide Window into Live Cells

Abstract:
Important information about live cells' behavior and environment may be gained using a new, easy to make fluorescent gold nanocluster, say scientists in Germany and USA.

Fluorescent Clusters Provide Window into Live Cells

Germany | Posted on August 29th, 2011

Studying the behavior of live cells is vastly important to help us understand how our own cells react to changes in environment or invasion, and also to devise better ways to control and contain hostile microbes. To visualize the cells and their processes, labels of some sort are usually required; many of these are fluorescent and can be tracked using external microscopy. Such labels can be laborious to produce and their stability and biocompatibility are a primary concern. Recent advances in nanotechnology have given rise to a new class of fluorescent labels, fluorescent metal nanoclusters. These tiny clusters of metal are small and highly fluorescent and have particular electronic properties because of their size. Their stability can be severely affected by the choice of ligand that sits on the outside of the cluster.

Now, researchers at Karlsruhe Institute of Technology, Germany and University of Illinois in the USA, led by Professor Ulrich Nienhaus, have developed an easy way to make water-soluble fluorescent gold nanoclusters (Au NCs) stabilized with a ligand called dihydrolipoic acid (DHLA). DHLA has two connection points (bidentate) to the cluster which helps to make the cluster extra stable. These Au NCs are highly stable, have bright near-infrared fluorescence emission, are very small, and very biocompatible, all of which makes them promising as novel fluorescent probes for application in biological research. The fluorescence lifetime of the clusters is approximately twice that of background cell fluorescence, so they could easily be visualized within or around a cell using fluorescence lifetime imaging (FLIM).

But the researchers did not stop there. Keen to show just how promising their ligand-stabilized clusters are, they visualized the internalization of the Au NCs by live HeLa cells using FLIM. This technique not only reveals the uptake of the Au NCs by the cells but also provides information about the changed local environment of the Au NCs on uptake through the cell membrane. Au NCs near the cell membrane have a longer fluorescence lifetime than those actually internalized by the cells.

The scientists anticipate that their fluorescent Au NCs will find wide application in biomedical research, including intracellular drug delivery, ultrasensitive molecular diagnostics, and image-guided therapy.

####

For more information, please click here

Copyright © Wiley-VCH Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

L. Shang et al., Small ; DOI: 10.1002/smll.201100746

Related News Press

Imaging

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

News and information

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Nanomedicine

Particle Works launches range of high quality magnetic nanoparticles August 31st, 2016

Designing ultrasound tools with Lego-like proteins August 29th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

Discoveries

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

Announcements

GrapheneCanada 2016 International Conference: Recent advances in technology developments and business opportunities in graphene commercialization August 31st, 2016

FEI Celebrates Shipment of 1,000th Helios DualBeam System: FEIís Helios Family has lead the DualBeam technology race and is widely used across the semiconductor, materials science, life sciences and oil & gas industries August 31st, 2016

Colors from darkness: Researchers develop alternative approach to quantum computing August 31st, 2016

Diamonds and quantum information processing on the nano scale August 31st, 2016

Research partnerships

Device to control 'color' of electrons in graphene provides path to future electronics August 31st, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic