Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Tiny wires change behavior at nanoscale: Rice University researchers surprised to see twin-induced brittle-like fractures in gold nanowires

A single crystal nanowire shows evidence of twinning under tensile loading in this electron microscope image. A new study by the Rice University lab of Jun Lou determined that tiny gold wires change their behavior at the nanoscale. (Credit: Lou Lab/Rice University)
A single crystal nanowire shows evidence of twinning under tensile loading in this electron microscope image. A new study by the Rice University lab of Jun Lou determined that tiny gold wires change their behavior at the nanoscale.

(Credit: Lou Lab/Rice University)

Abstract:
Thin gold wires often used in high-end electronic applications are wonderfully flexible as well as conductive. But those qualities don't necessarily apply to the same wires at the nanoscale.

Tiny wires change behavior at nanoscale: Rice University researchers surprised to see twin-induced brittle-like fractures in gold nanowires

Houston, TX | Posted on August 29th, 2011

A new study from Rice University finds gold wires less than 20 nanometers wide can become "brittle-like" under stress. It appears in the journal Advanced Functional Materials.

The paper by Rice materials scientist Jun Lou and his lab shows in microscopic detail what happens to nanowires under the kinds of strain they would reasonably undergo in, for instance, flexible electronics.

Their technique provides a way for industry to see just how nanowires made of gold, silver, tellurium, palladium and platinum are likely to hold up in next-generation nanoelectronic devices.

Lou and his team had already established that metal wires have unique properties on the nanoscale. They knew such wires undergo extensive plastic deformation and then fracture on both the micro- and nanoscale. In that process, materials under stress exhibit "necking"; that is, they deform in a specific region and then stretch down to a point before they eventually break.

"Gold is extremely ductile," said Lou, an assistant professor of mechanical engineering and materials science. "That means you can stretch it, and it can withstand very large displacement.

"But in this work, we discovered that gold is not necessarily very ductile at the nanoscale. When we stress it in a slightly different way, we can form a defect called a twin."

The term "twinning" comes from the mirrorlike atomic structure of the defect, which is unique to crystals. "At the boundary, the atoms on the left and right sides exactly mirror each other," Lou said. Twins in nanowires show up as dark lines across the wire under an electron microscope.

"The material is not exactly brittle, like glass or ceramic, which fracture with no, or very little, ductility," he said. "In this case, we call it brittle-like, which means it has significantly reduced ductility. There's still some, but the fracture behavior is different from regular necking."

Their experiments on 22 gold wires of less than 20 nanometers involved the delicate operation of clamping them to a transmission electron microscope/atomic force microscope sample holder and then pulling them at constant loading speeds. Twins appeared under the shear component of the stress, which forced atoms to shift at the location of surface defects and led to a kind of nanoscale tectonic fault across the wire.

"Once you have those kinds of damage-initiation sites formed in the nanowire, you will have a lot less ductility. The metal will fracture prematurely," Lou said. "We didn't expect such twin-boundary formations would have such profound effects."

With current technology, it's nearly impossible to align the grip points on either side of the wire, so shear force on the nanowires was inevitable. "But this kind of loading mode will inevitably be encountered in the real world," he said. "We cannot imagine all the nanowires in an application will be stressed in a perfectly uniaxial way."

Lou said the results are important to manufacturers thinking of using gold as a nanomechanical element. "Realistically, you could have some off-axis angle of stress, and if these twins form, you would have less ductility than you would expect. Then the design criteria would have to change.

"That's basically the central message of this paper: Don't be fooled by the traditional definition of 'ductile,'" he said. "At the nanoscale, things can happen differently."

Lou's team included former Rice graduate student and the paper's first author, Yang Lu, now a postdoctoral researcher at MIT. Jun Song, an assistant professor at McGill University, and Jian Yu Huang, a scientist at Sandia National Laboratories, are co-authors of the paper.

The Air Force Office of Sponsored Research, National Science Foundation and Department of Energy supported the research.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

MEMS & Sensors Technology Showcase: Finalists Announced for MEMS Executive Congress US 2014 October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nanoelectronics

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Discoveries

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Iranian, Malaysian Scientists Study Nanophotocatalysts for Water Purification October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Announcements

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Military

NanoTechnology for Defense (NT4D) October 22nd, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

1980s aircraft helps quantum technology take flight October 20th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE