Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New nanomaterial

Abstract:
Nanowing is plate of special material where propulsion force provided by different pressure of air on different sides of the plate, due to one-side nanosurface relief.

New nanomaterial

Russia | Posted on August 22nd, 2011

Our company is developing new product, it is advanced nanomaterial. The new material named Active Force Material AFM.

It is new business project presented by Mr. Alexander V. Frolov, Director of Faraday Company Ltd., Russia. It is planned to found a new company for the nanotech project.

Conception of this project use modern nanoscience surface engineering. It is planned to create new material providing active propulsion force due to different air pressure, acting on the different sides of the plate. Then, it is planned to organize sales of license and production of AFM ˆ Active Force Material. Innovation of the technology is possible in aerospace, ship building, auto car, power engineering industry.

Technical idea is simple: air molecules are moving. It is chaotical motion but using special relief of nanomaterial we can provide propulsion force and make machines work. There are few methods to get AFM effects. One method is micro relief with size elements about 50-500 nm on one surface of the plate.

This art of work can be made by nanotechnology experts, also in chip and semiconductor elements laboratories. So, we need nanotech partner in our new team.

How it works? Other understanding of the same technological task: we have to create two different sides of the plate, elastic and inelastic for interaction with air molecules. In this case there is non-zero summary force, acting in one direction. This force is result of difference (gradient) of air pressure.

Other analogy useful for understanding of the idea is "wing effect" invented by Prof. Jukowsky and Chaplygin in 1904, Russia. Any wing provide lifting force due to different pressure above and below of the wing. This difference in air pressure (the gradient of pressure) is result of difference in relative velocity between the wing and air. So, we have to create difference in relative velocity.

In proposed conception we plan to get the gradient of pressure for the case of immovable wing and stationary air, only thing is moving here are molecules of air. Velocity is very high but their motion is not ordered, it is chaotic. The idea is to use nanotechnology surface engineering to make their motion to be ordered and by this way to get gradient of air pressure.

Calculations let us see some real perspectives: for the first experimental level of the technology we can estimate 10% gradient of atmosphere pressure that is equivalent of 100 gram force acting onto 1 square cm. Plate made of AF- material of 1 square meter size will produce propulsion force equal to 1,000 kg. Propulsion unit made of 100 AFM plates can be placed in volume of 1 cubic meter and it can produce lifting force about 100,000 kg. It can be applied in aerospace industry. No fuel, no input power is necessary to make it work.

Main method is micro relief with size elements about 50-500 nm on one surface of the plate. This art of work can be made by nanotechnology experts, in chip and semiconductor elements laboratories. So, we need nanotech partner in our new team. We can create own nanotech laboratory in 2014 to develop the product.

The first demonstrable results can be small 50x50 mm plates of one-side relief matter, and we estimate to see 1 ˆ 2 kg propulsion active force effects for this material. No fuel, no input∑ The air atmospheric pressure can produce work. Demonstration of workable, i.e. flying in air plates made of AF - materials, will convince future investors and Customers to buy the technology. Application of the technology is aviation, transport, energy. Total size of market to sale licenses is 70 bil Euro.

####

About Faraday Company Ltd.
Faraday Company Ltd. was established in 2001, Moscow to develop experimental research mainly in clean energy area and aerospace topics. In 2002-2010 the laboratory worked in St.-Petersburg, in 2010 the company started work in Tula.

For more information, please click here

Contacts:
Alexander Frolov
Phone: 79207944448

Copyright © Faraday Company Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Marine/Watercraft

Enhanced Graphene Components for Next Generation Racing Yacht March 5th, 2015

BRAAVOO will design an unmanned surveying vessel and marine buoy that carry biosensors to monitor marine pollutants November 12th, 2014

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Discoveries

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Materials/Metamaterials

Electron spin brings order to high entropy alloys April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Announcements

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Automotive/Transportation

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Aerospace/Space

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Engineer improves rechargeable batteries with MoS2 nano 'sandwich' April 18th, 2015

Graphenea embarks on a new era April 16th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project