Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New nanomaterial

Abstract:
Nanowing is plate of special material where propulsion force provided by different pressure of air on different sides of the plate, due to one-side nanosurface relief.

New nanomaterial

Russia | Posted on August 22nd, 2011

Our company is developing new product, it is advanced nanomaterial. The new material named Active Force Material AFM.

It is new business project presented by Mr. Alexander V. Frolov, Director of Faraday Company Ltd., Russia. It is planned to found a new company for the nanotech project.

Conception of this project use modern nanoscience surface engineering. It is planned to create new material providing active propulsion force due to different air pressure, acting on the different sides of the plate. Then, it is planned to organize sales of license and production of AFM ˆ Active Force Material. Innovation of the technology is possible in aerospace, ship building, auto car, power engineering industry.

Technical idea is simple: air molecules are moving. It is chaotical motion but using special relief of nanomaterial we can provide propulsion force and make machines work. There are few methods to get AFM effects. One method is micro relief with size elements about 50-500 nm on one surface of the plate.

This art of work can be made by nanotechnology experts, also in chip and semiconductor elements laboratories. So, we need nanotech partner in our new team.

How it works? Other understanding of the same technological task: we have to create two different sides of the plate, elastic and inelastic for interaction with air molecules. In this case there is non-zero summary force, acting in one direction. This force is result of difference (gradient) of air pressure.

Other analogy useful for understanding of the idea is "wing effect" invented by Prof. Jukowsky and Chaplygin in 1904, Russia. Any wing provide lifting force due to different pressure above and below of the wing. This difference in air pressure (the gradient of pressure) is result of difference in relative velocity between the wing and air. So, we have to create difference in relative velocity.

In proposed conception we plan to get the gradient of pressure for the case of immovable wing and stationary air, only thing is moving here are molecules of air. Velocity is very high but their motion is not ordered, it is chaotic. The idea is to use nanotechnology surface engineering to make their motion to be ordered and by this way to get gradient of air pressure.

Calculations let us see some real perspectives: for the first experimental level of the technology we can estimate 10% gradient of atmosphere pressure that is equivalent of 100 gram force acting onto 1 square cm. Plate made of AF- material of 1 square meter size will produce propulsion force equal to 1,000 kg. Propulsion unit made of 100 AFM plates can be placed in volume of 1 cubic meter and it can produce lifting force about 100,000 kg. It can be applied in aerospace industry. No fuel, no input power is necessary to make it work.

Main method is micro relief with size elements about 50-500 nm on one surface of the plate. This art of work can be made by nanotechnology experts, in chip and semiconductor elements laboratories. So, we need nanotech partner in our new team. We can create own nanotech laboratory in 2014 to develop the product.

The first demonstrable results can be small 50x50 mm plates of one-side relief matter, and we estimate to see 1 ˆ 2 kg propulsion active force effects for this material. No fuel, no input∑ The air atmospheric pressure can produce work. Demonstration of workable, i.e. flying in air plates made of AF - materials, will convince future investors and Customers to buy the technology. Application of the technology is aviation, transport, energy. Total size of market to sale licenses is 70 bil Euro.

####

About Faraday Company Ltd.
Faraday Company Ltd. was established in 2001, Moscow to develop experimental research mainly in clean energy area and aerospace topics. In 2002-2010 the laboratory worked in St.-Petersburg, in 2010 the company started work in Tula.

For more information, please click here

Contacts:
Alexander Frolov
Phone: 79207944448

Copyright © Faraday Company Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Marine/Watercraft

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

NIST-made 'sun and rain' used to study nanoparticle release from polymers October 5th, 2016

New material to revolutionize water proofing September 12th, 2016

Discoveries

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Materials/Metamaterials

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Automotive/Transportation

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Aerospace/Space

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

National Space Society Governor Scott Pace Named to National Space Council as Executive Secretary July 18th, 2017

National Space Society Supports VP Pence's Call for Constant Low-Earth Orbit Human Presence Leading to the Settlement of Space July 13th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project