Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > LLNL researcher awarded $2.4 million from NIH for bio weapon mitigation

Pejman Naraghi-Arani, right, holds one of the assay chips that the Nanostring nCounter uses for detection and quantitation of RNA molecules as Maher El Sheikh looks on.
Photos by Jacqueline McBride/PAO
Pejman Naraghi-Arani, right, holds one of the assay chips that the Nanostring nCounter uses for detection and quantitation of RNA molecules as Maher El Sheikh looks on.
Photos by Jacqueline McBride/PAO

Abstract:
Lawrence Livermore National Laboratory researcher Pejman Naraghi-Arani has been awarded $2.4 million by the National Institutes of Health under the Partnerships for Biodefense Program, which aims to develop various tools that can be applied to detect, mitigate the effects of or protect against an attack by a biological weapon.

LLNL researcher awarded $2.4 million from NIH for bio weapon mitigation

Livermore, CA | Posted on August 22nd, 2011

Naraghi-Arani and partners, including the University of Texas Medical Branch, the University of California San Francisco and NanoString Technologies Corp., will use the funding to develop assays capable of detecting 35 category A, B and C viral pathogens, which include Ebola, Marburg, Dengue, Chikungunya and others.

Most diseases on this list present initial symptoms similar to a cold or flu -- headaches, nausea and fever. Without the ability to detect the presence of specific viruses, there is no way to tell the difference between a normal infection and a deadly disease, reducing the treatment time window and thus, the ability to mitigate the virus' spread. However, by developing an assay that leverages the NanoString's nCounter platform, these viruses can be quickly detected, in addition to specific cytokine and chemokine markers of infection.

Naraghi-Arani, a biomedical scientist and thrust area leader for molecular assays and virology, believes that his process will address one of the biggest problems anticipated in a real biological attack. "This product will help prevent one of the main things a terrorist group would want, which is to overwhelm emergency response," he said. "It will be very similar to the response we saw in the anthrax attacks; however, it won't just be concerned people calling a center. It will be worried people flooding hospitals, and this way we can process them much faster."

In the event of a biological attack, hospitals will see three types of patients: those infected with the disease, those with a different disease with similar symptoms (cold, flu) and those that are simply concerned. Instead of overwhelming the emergency room and creating both pandemonium and the perfect environment to spread disease, patients will give a tiny amount of blood -- 100 microliters -- at a station outside the facility and go home to await their results.

The platform has the ability to test upward of 100 samples per day with only five minutes of patient contact each and return results within 24 hours -- not only if the patient has elevated cytokine and chemokine markers, but if they are infected with any one of the 35 viruses. At that point, the patients will know if they need to come back in, well within the timeframe for treatment before symptoms advance.

"One of the main reasons this system is important is that it enables us to make real diagnosis of diseases as opposed to looking at very general kinds of symptoms and guessing," Naraghi-Arani said. "This kind of research also helps us to identify specific biomarkers associated with these very dangerous pathogens and allows us to develop even better tools for mitigation, such as novel antivirals.

At the end of the project in 2014, the partners will have a real, commercial product on hand, ready to deploy in the event of an attack. According to Naraghi-Arani, the need is present even in the absence of bioterrorism. Many of these diseases are on the move from their traditional endemic locations, he said, and could easily find a home in this country.

"There are definite real-world applications right now in the United States with emerging diseases that we know could be an issue. It would be great to have these tools available, even without the presence of a biological attack, because we need to be able to respond quickly," he said. "This is an example of how partnerships between the government, national laboratories, universities and corporations help to solve some of our bigger problems."

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Breanna Bishop
Phone: (925) 423-9802

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process and achieve first-ever observation August 11th, 2017

Nanomedicine

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Homeland Security

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Military

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project