Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > LLNL researcher awarded $2.4 million from NIH for bio weapon mitigation

Pejman Naraghi-Arani, right, holds one of the assay chips that the Nanostring nCounter uses for detection and quantitation of RNA molecules as Maher El Sheikh looks on.
Photos by Jacqueline McBride/PAO
Pejman Naraghi-Arani, right, holds one of the assay chips that the Nanostring nCounter uses for detection and quantitation of RNA molecules as Maher El Sheikh looks on.
Photos by Jacqueline McBride/PAO

Abstract:
Lawrence Livermore National Laboratory researcher Pejman Naraghi-Arani has been awarded $2.4 million by the National Institutes of Health under the Partnerships for Biodefense Program, which aims to develop various tools that can be applied to detect, mitigate the effects of or protect against an attack by a biological weapon.

LLNL researcher awarded $2.4 million from NIH for bio weapon mitigation

Livermore, CA | Posted on August 22nd, 2011

Naraghi-Arani and partners, including the University of Texas Medical Branch, the University of California San Francisco and NanoString Technologies Corp., will use the funding to develop assays capable of detecting 35 category A, B and C viral pathogens, which include Ebola, Marburg, Dengue, Chikungunya and others.

Most diseases on this list present initial symptoms similar to a cold or flu -- headaches, nausea and fever. Without the ability to detect the presence of specific viruses, there is no way to tell the difference between a normal infection and a deadly disease, reducing the treatment time window and thus, the ability to mitigate the virus' spread. However, by developing an assay that leverages the NanoString's nCounter platform, these viruses can be quickly detected, in addition to specific cytokine and chemokine markers of infection.

Naraghi-Arani, a biomedical scientist and thrust area leader for molecular assays and virology, believes that his process will address one of the biggest problems anticipated in a real biological attack. "This product will help prevent one of the main things a terrorist group would want, which is to overwhelm emergency response," he said. "It will be very similar to the response we saw in the anthrax attacks; however, it won't just be concerned people calling a center. It will be worried people flooding hospitals, and this way we can process them much faster."

In the event of a biological attack, hospitals will see three types of patients: those infected with the disease, those with a different disease with similar symptoms (cold, flu) and those that are simply concerned. Instead of overwhelming the emergency room and creating both pandemonium and the perfect environment to spread disease, patients will give a tiny amount of blood -- 100 microliters -- at a station outside the facility and go home to await their results.

The platform has the ability to test upward of 100 samples per day with only five minutes of patient contact each and return results within 24 hours -- not only if the patient has elevated cytokine and chemokine markers, but if they are infected with any one of the 35 viruses. At that point, the patients will know if they need to come back in, well within the timeframe for treatment before symptoms advance.

"One of the main reasons this system is important is that it enables us to make real diagnosis of diseases as opposed to looking at very general kinds of symptoms and guessing," Naraghi-Arani said. "This kind of research also helps us to identify specific biomarkers associated with these very dangerous pathogens and allows us to develop even better tools for mitigation, such as novel antivirals.

At the end of the project in 2014, the partners will have a real, commercial product on hand, ready to deploy in the event of an attack. According to Naraghi-Arani, the need is present even in the absence of bioterrorism. Many of these diseases are on the move from their traditional endemic locations, he said, and could easily find a home in this country.

"There are definite real-world applications right now in the United States with emerging diseases that we know could be an issue. It would be great to have these tools available, even without the presence of a biological attack, because we need to be able to respond quickly," he said. "This is an example of how partnerships between the government, national laboratories, universities and corporations help to solve some of our bigger problems."

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Breanna Bishop
Phone: (925) 423-9802

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Nanomedicine

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Announcements

Take a trip through the brain July 30th, 2015

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Homeland Security

Nanopaper as an optical sensing platform July 23rd, 2015

Iranian Scientists Design Nano Device to Detect Cyanogen Toxic Gas June 23rd, 2015

New sensing tech could help detect diseases, fraudulent art, chemical weapons June 1st, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Military

Take a trip through the brain July 30th, 2015

Sol-gel capacitor dielectric offers record-high energy storage July 30th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project