Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon nanotube structures changed by 'attack' from within, researchers discover

Abstract:
A team of researchers involving scientists from The University of Nottingham has shown for the first time that chemical reactions at the nano-level which change the structure of carbon nanotubes can be sparked by an ‘attack' from within.

Carbon nanotube structures changed by 'attack' from within, researchers discover

Nottingham, UK | Posted on August 16th, 2011

The discovery challenges previous scientific thinking that the internal surface of the hollow nanostructures is chemically unreactive, largely restricting their use to that of an inert container or a ‘nano-reactor' inside which other chemical reactions can take place.

Their research, published in the journal Nature Chemistry, shows that carbon nanotubes that have had their structures changed are exciting new materials that could be useful in the development of new technologies for gas storage devices, chemical sensors and parts of electronic devices such as transistors.

Dr Andrei Khlobystov, of the University's School of Chemistry, who led the work at Nottingham, said: "It has universally been accepted for some time now that the internal surface of carbon nanotubes — or the concave side — is chemically unreactive, and indeed we have been successfully using carbon nanotubes as nano-reactors.

"However, in the course of this new research we made the serendipitous discovery that in the presence of catalytically active transition metals inside the nanotube cavity, the nanotube itself can be involved in unexpected chemical reactions."

Carbon nanotubes are remarkable nanostructures with a typical diameter of 1-2 nanometres, which is 80,000 times smaller than the thickness of a human hair. Dr Khlobystov and his research associates were recently involved in the discovery — published in Nature Materials — that nanotubes can be used as a catalyst for the production of nanoribbon, atomically thin strips of carbon created from carbon and sulphur atoms. These nanoribbons could potentially be used as new materials for the next generation of computers and data storage devices that are faster, smaller and more powerful.

In this latest research, the scientists found that an individual atom of Rhenium metal (Re) sets off a chemical reaction leading to the transformation of the inner wall of the nanotube. Initially, the attack by the Rhenium creates a small defect in the nanotube wall which then gradually develops into a nano-sized protrusion by ‘eating' additional carbon atoms.

The protrusion then rapidly increases in size and seals itself off, forming a unique carbon structure dubbed a NanoBud, so called because the protrusion on the carbon nanotube resembles a bud on a stem.

Previously, NanoBuds were believed to be formed outside the nanotube through reactions on the outer surface with carbon molecules called fullerenes.

The new study demonstrates for the first time that they can be formed from within, provided that a transition metal atom with suitable catalytic activity is present within the nanotube.

In collaboration with the Electron Microscopy of Materials Science group at Ulm University in Germany, the scientists have even been able to capture ‘on camera' the chemical reaction of the transition metal atom with the nanotube in real time at the atomic level using the latest Aberration-Corrected High Resolution Transmission Electron Microscopy (AC-HRTEM). Their videos show nanotubes with a diameter of around 1.5 nanometers, while the NanoBuds are just 1 nanometer across.

####

For more information, please click here

Contacts:
Dr Andrei Khlobystov


Emma Thorne
Media Relations Manager
Email:
Phone: +44 (0)115 951 5793
Location: King's Meadow Campus

Copyright © University of Nottingham

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Chemistry

Production of Toxic Ion Nanosorbents with High Sorption Capacity in Iran August 17th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Could hemp nanosheets topple graphene for making the ideal supercapacitor? August 12th, 2014

Iranians Find Novel Method for Processing Highly Pure Ceramic Nanoparticles August 12th, 2014

Chip Technology

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Fonon Announces 3D Metal Sintering Technology: Emerging Additive Nano Powder Manufacturing Technology August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Sensors

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Discoveries

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Announcements

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Nano-forests to reveal secrets of cells September 2nd, 2014

Tools

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Raman Whispering Gallery Detects Nanoparticles September 1st, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Ultra-Low Frequency Vibration Isolation Stabilizes Scanning Tunneling Microscopy at UCLA’s Nano-Research Group August 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE