Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Flowing Structures in Soft Crystals

Intriguing structures formed by tiny particles floating in liquids. (Copyright: Vienna University of Technology)
Intriguing structures formed by tiny particles floating in liquids. (Copyright: Vienna University of Technology)

Abstract:
A liquid does not have to be a disordered bunch of particles: A team of researchers at Vienna University of Technology (TU Vienna) and the University of Vienna has discovered intriguing structures formed by tiny particles floating in liquids. Under mechanical strain, particle clusters in liquids can spontaneously form strings and dramatically alter the properties of the liquid.

Flowing Structures in Soft Crystals

Vienna, Austria | Posted on August 8th, 2011

What is common to blood, ink and gruel? They are all liquids in which tiny particles are suspended - so called "colloids". In some of these liquids, the particles form groups (clusters), which form regular structures, much like atoms in a crystal. A team of researchers from TU Vienna and Vienna University has now managed to study the remarkable properties of these crystal-like substances in computer simulations. Under mechanical strain, the crystalline pattern can change into a different structure, or it can vanish completely. The researchers anticipate a broad range of practical applications for these effects. The results of their calculations have now been published in the scientific journal "Physical Review Letters".

Regular Structures in Liquids
If small particles accumulate, they can form clusters. Within a cluster, the particles may overlap and mingle, similar to a densely packed shoal of eels, gliding past each other. Remarkably, these clusters are not situated at random positions, but they spontaneously form a regular structure - a "cluster crystal". The distance between two neighboring clusters is constant. "Increasing the density of particles adds more and more particles to each cluster - but the distance between them stays the same", says Arash Nikoubashman, PhD-student at TU Vienna. He made the calculations together with Professor Gerhard Kahl (Institute for Theoretical Physics, TU Vienna) and Professor Christos Likos (University of Vienna).

Crystal Structure Turning into Strings
"Previous results had already led us to believe that these particles could exhibit strange behavior under certain external conditions", the physicists explain. And their hopes were not unfounded: in computer simulations they managed to calculate how the crystal-like structure behaves under mechanical strain that causes shears stress - which means that surfaces within the liquid are shifted relative to each other. At first, the crystal structure starts to melt, the connections between the clusters are broken. From these molten particle clusters, a new regular order starts to emerge spontaneously. Long, straight strings of particle are formed, neatly aligned in parallel.

Thin and Thick
While these strings are created, the liquid gets thinner, its viscosity decreases. This is due to the strings being able to slide relative to one another. If the material is subject to even more strain, the strings break up too, a "molten" unstructured ensemble of particle clusters remains, and the viscosity of the liquid increases again. More and more particles are washed away from their original positions and inhibit the flow. This behavior is the same for all kinds of cluster crystals. With a simple theoretical model, the critical strain, at which the ordered structure vanishes completely, can be predicted very accurately.

Under shear strain, crystals made of soft, penetrable particles can exhibit new kinds of self-organization. Geometric structures emerge, governed by the kind of forces acting between the particles. This research in the field of "soft matter" in the micro- and nanometer regime is not only interesting from a theoretical point of view. These materials play an important role in our everyday life - such as blood or large biopolymers like DNA. They are important in biotechnology, and also in petrochemistry and pharmacology - wherever tailor-made nano materials are being used. A liquid which can change its viscosity under mechanical stress promises a broad spectrum of possible applications - ranging from vibration dampers to protective clothing.

####

For more information, please click here

Contacts:
Scientific contacts
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Computational Physics
University of Vienna
1090 Wien, Sensengasse 8
T +43-1-4277-732 30


Arash Nikoubashman
Vienna University of Technology
Wiedner Hauptstraße 8-10
T +43-1-58801-136 31


Press contact
Mag. Veronika Schallhart
Public Relations
University of Vienna
1010 Vienna, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-60277-175 30

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

Materials/Metamaterials

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

New quantum phenomena in graphene superlattices September 18th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

Announcements

GLOBALFOUNDRIES Announces Availability of Embedded MRAM on Leading 22FDX® FD-SOI Platform: Advanced embedded non-volatile memory solution delivers ‘connected intelligence’ by expanding SoC capabilities on the 22nm process node September 20th, 2017

GLOBALFOUNDRIES Delivers 8SW RF SOI Technology for Next-Generation Mobile and 5G Applications: Advanced 8SW 300mm SOI technology enables cost-effective, high-performance RF front-end modules for 4G LTE mobile and sub-6GHz 5G applications September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Textiles/Clothing

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Carbodeon demonstrates NanoDiamond nickel coatings with enhanced tribological properties June 7th, 2017

New ultrafast flexible and transparent memory devices could herald new era of electronics April 1st, 2017

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Research partnerships

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

New insights into nanocrystal growth in liquid: Understanding process that creates complex crystals important for energy applications September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project