Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Flowing Structures in Soft Crystals

Intriguing structures formed by tiny particles floating in liquids. (Copyright: Vienna University of Technology)
Intriguing structures formed by tiny particles floating in liquids. (Copyright: Vienna University of Technology)

Abstract:
A liquid does not have to be a disordered bunch of particles: A team of researchers at Vienna University of Technology (TU Vienna) and the University of Vienna has discovered intriguing structures formed by tiny particles floating in liquids. Under mechanical strain, particle clusters in liquids can spontaneously form strings and dramatically alter the properties of the liquid.

Flowing Structures in Soft Crystals

Vienna, Austria | Posted on August 8th, 2011

What is common to blood, ink and gruel? They are all liquids in which tiny particles are suspended - so called "colloids". In some of these liquids, the particles form groups (clusters), which form regular structures, much like atoms in a crystal. A team of researchers from TU Vienna and Vienna University has now managed to study the remarkable properties of these crystal-like substances in computer simulations. Under mechanical strain, the crystalline pattern can change into a different structure, or it can vanish completely. The researchers anticipate a broad range of practical applications for these effects. The results of their calculations have now been published in the scientific journal "Physical Review Letters".

Regular Structures in Liquids
If small particles accumulate, they can form clusters. Within a cluster, the particles may overlap and mingle, similar to a densely packed shoal of eels, gliding past each other. Remarkably, these clusters are not situated at random positions, but they spontaneously form a regular structure - a "cluster crystal". The distance between two neighboring clusters is constant. "Increasing the density of particles adds more and more particles to each cluster - but the distance between them stays the same", says Arash Nikoubashman, PhD-student at TU Vienna. He made the calculations together with Professor Gerhard Kahl (Institute for Theoretical Physics, TU Vienna) and Professor Christos Likos (University of Vienna).

Crystal Structure Turning into Strings
"Previous results had already led us to believe that these particles could exhibit strange behavior under certain external conditions", the physicists explain. And their hopes were not unfounded: in computer simulations they managed to calculate how the crystal-like structure behaves under mechanical strain that causes shears stress - which means that surfaces within the liquid are shifted relative to each other. At first, the crystal structure starts to melt, the connections between the clusters are broken. From these molten particle clusters, a new regular order starts to emerge spontaneously. Long, straight strings of particle are formed, neatly aligned in parallel.

Thin and Thick
While these strings are created, the liquid gets thinner, its viscosity decreases. This is due to the strings being able to slide relative to one another. If the material is subject to even more strain, the strings break up too, a "molten" unstructured ensemble of particle clusters remains, and the viscosity of the liquid increases again. More and more particles are washed away from their original positions and inhibit the flow. This behavior is the same for all kinds of cluster crystals. With a simple theoretical model, the critical strain, at which the ordered structure vanishes completely, can be predicted very accurately.

Under shear strain, crystals made of soft, penetrable particles can exhibit new kinds of self-organization. Geometric structures emerge, governed by the kind of forces acting between the particles. This research in the field of "soft matter" in the micro- and nanometer regime is not only interesting from a theoretical point of view. These materials play an important role in our everyday life - such as blood or large biopolymers like DNA. They are important in biotechnology, and also in petrochemistry and pharmacology - wherever tailor-made nano materials are being used. A liquid which can change its viscosity under mechanical stress promises a broad spectrum of possible applications - ranging from vibration dampers to protective clothing.

####

For more information, please click here

Contacts:
Scientific contacts
Univ.-Prof. Dipl.-Ing. Dr. Christos Likos
Computational Physics
University of Vienna
1090 Wien, Sensengasse 8
T +43-1-4277-732 30


Arash Nikoubashman
Vienna University of Technology
Wiedner Hauptstraße 8-10
T +43-1-58801-136 31


Press contact
Mag. Veronika Schallhart
Public Relations
University of Vienna
1010 Vienna, Dr.-Karl-Lueger-Ring 1
T +43-1-4277-175 30
M +43-664-60277-175 30

Copyright © University of Vienna

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Materials/Metamaterials/Magnetoresistance

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Focused ion beam technology: A single tool for a wide range of applications January 12th, 2024

Catalytic combo converts CO2 to solid carbon nanofibers: Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material January 12th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Research partnerships

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project