Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > 'Amplified' nanotubes may power the future: Rice University lab bulks up raw materials for highly efficient electric grid

These images show a single carbon nanotube before and after amplification, a process developed at Rice University seen as key in the development of armchair quantum wire. Such a wire would transmit electricity over great distances with virtually no loss. (Credit: Barron Lab/Rice University)
These images show a single carbon nanotube before and after amplification, a process developed at Rice University seen as key in the development of armchair quantum wire. Such a wire would transmit electricity over great distances with virtually no loss.
(Credit: Barron Lab/Rice University)

Abstract:
Rice University scientists have achieved a pivotal breakthrough in the development of a cable that will make an efficient electric grid of the future possible.

'Amplified' nanotubes may power the future: Rice University lab bulks up raw materials for highly efficient electric grid

Houston, TX | Posted on July 14th, 2011

Armchair quantum wire (AQW) will be a weave of metallic nanotubes that can carry electricity with negligible loss over long distances. It will be an ideal replacement for the nation's copper-based grid, which leaks electricity at an estimated 5 percent per 100 miles of transmission, said Rice chemist Andrew R. Barron, author of a paper about the latest step forward published online by the American Chemical Society journal Nano Letters.

A prime technical hurdle in the development of this "miracle cable," Barron said, is the manufacture of massive amounts of metallic single-walled carbon nanotubes, dubbed armchairs for their unique shape. Armchairs are best for carrying current, but can't yet be made alone. They grow in batches with other kinds of nanotubes and have to be separated out, which is a difficult process given that a human hair is 50,000 times larger than a single nanotube.

Barron's lab demonstrated a way to take small batches of individual nanotubes and make them dramatically longer. Ideally, long armchair nanotubes could be cut, re-seeded with catalyst and re-grown indefinitely.

The paper was written by graduate student and first author Alvin Orbaek, undergraduate student Andrew Owens and Barron, the Charles W. Duncan Jr.-Welch Professor of Chemistry and a professor of materials science.

Amplification of nanotubes was seen as a key step toward the practical manufacture of AQW by the late Rice professor, nanotechnology pioneer and Nobel laureate Richard Smalley, who worked closely with Barron and Rice chemist James Tour, the T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, to lay out a path for its development.

Barron charged Orbaek with the task of following through when he joined the lab five years ago. "When I first heard about Rice University, it was because of Rick Smalley and carbon nanotubes," said Orbaek, a native of Ireland. "He had a large global presence with regard to nanotechnology, and that reached me.

"So I was delighted to come here and find I'd be working on nanotube growth that was related to Smalley's work."

Orbaek said he hasn't strayed far from Barron's original direction, which involved chemically attaching an iron/cobalt catalyst to the ends of nanotubes and then fine-tuning the temperature and environment in which amplification could occur.

"My group, with Smalley and Tour's group, demonstrated you could do this -- but in the first demonstration, we got only one tube to grow out of hundreds or thousands," Barron said. Subsequent experiments raised the yield, but tube growth was minimal. In other attempts, the catalyst would literally eat -- or "etch" -- the nanotubes, he said.

Refining the process has taken years, but the payoff is clear because up to 90 percent of the nanotubes in a batch can now be amplified to significant lengths, Barron said. The latest experiments focused on single-walled carbon nanotubes of various chiralities, but the researchers feel the results would be as great, and probably even better, with a batch of pristine armchairs.

The key was finding the right balance of temperatures, pressures, reaction times and catalyst ratios to promote growth and retard etching, Barron said. While initial growth took place at 1,000 degrees Celsius, the researchers found the amplification step required lowering the temperature by 200 degrees, in addition to adjusting the chemistry to maximize the yield.

"What we're getting to is that sweet spot where most of the nanotubes grow and none of them etch," Barron said.

Wade Adams, director of Rice's Richard E. Smalley Institute for Nanoscale Science and Technology and principal investigator on the AQW project, compared the technique to making sourdough bread. "You make a little batch of pure metallics and then amplify that tremendously to make a large amount. This is an important increment in developing the science to make AQW.

Adams noted eight Rice professors and dozens of their students are working on aspects of AQW. "We know how to spin nanotubes into fibers, and their properties are improving rapidly too," he said. "All this now has to come together in a grand program to turn quantum wires into a product that will carry vast amounts of electricity around the world."

Barron and his team are continuing to fine-tune their process and hope that by summer's end they can begin amplifying armchair nanotubes with the goal of making large quantities of pure metallics. "We're always learning more about the mechanisms by which nanotubes grow," said Orbaek, who sees the end game as the development of a single furnace to grow nanotubes from scratch, cap them with new catalyst, amplify them and put out a steady stream of fiber for cables.

"What we've done is a baby step," he said. "But it verifies that, in the big picture, armchair quantum wire is technically feasible."

Orbaek said he is thrilled to play a role in achieving amplification, which Smalley recognized as necessary to his dream of an efficient energy grid that would catalyze solutions to many of the world's problems.

"I'd love to meet him now to say, 'Hey, man, you were right,'" he said.

The Robert A. Welch Foundation and the Air Force Office of Scientific Research funded the research. The Air Force Research Laboratory is primary funding agency for the AQW project.

####

About Rice University
Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its “unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf.

For more information, please click here

Contacts:
David Ruth

Director of National Media Relations

Rice University



Office: 713-348-6327

Cell: 612-702-9473





Facebook: www.facebook.com/DavidRuth | www.facebook.com/RiceUniversity

Twitter: @DavidRuth | @RiceUniversity

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Read the abstract at:

Related News Press

News and information

The International Space Elevator Consortium (ISEC) is proud to announce the 2014 Space Elevator Conference! This annual event will be held at the Museum of Flight in Seattle, Washington from Friday, August 22nd through Sunday, August 24th August 19th, 2014

KaSAM-2014 International Conference (September 7-10, 2014, Kathmandu, Nepal) August 19th, 2014

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Nanotubes/Buckyballs

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

SouthWest NanoTechnologies Inc. Announces $2.7 Million in New Financing to Fund Growth, Plant Expansion and Technical Personnel August 11th, 2014

Discoveries

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Сalculations with Nanoscale Smart Particles August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Graphene rubber bands could stretch limits of current healthcare, new research finds August 19th, 2014

Materials/Metamaterials

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Nano Bonds Increase Raw Strength of Fireproof Concretes August 18th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Scientists fold RNA origami from a single strand: RNA origami is a new method for organizing molecules on the nanoscale. Using just a single strand of RNA, this technique can produce many complicated shapes. August 14th, 2014

Announcements

Сalculations with Nanoscale Smart Particles August 19th, 2014

Life on Mars? Implications of a newly discovered mineral-rich structure August 19th, 2014

Harris & Harris Group Letter to Shareholders on Website August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Military

New material could enhance fast and accurate DNA sequencing August 13th, 2014

On the frontiers of cyborg science August 10th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

Energy

Chemical reaction yields "tapes" of porphin molecules: Flexible tapes from the nanoworld August 13th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

“Active” surfaces control what’s on them: Researchers develop treated surfaces that can actively control how fluids or particles move August 6th, 2014

Used-cigarette butts offer energy storage solution August 5th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE