Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brookhaven Lab Wins Two R&D 100 Awards for Imaging Devices Used in Scientific Research

Abstract:
The U.S. Department of Energy's (DOE) Brookhaven National Laboratory has won two R&D 100 Awards for developing imaging tools that will help researchers study materials ranging from seventeenth-century paintings to photovoltaics. The new devices promise to unlock scientific secrets with greater depth and coverage.

Brookhaven Lab Wins Two R&D 100 Awards for Imaging Devices Used in Scientific Research

Upton, NY | Posted on June 23rd, 2011

R&D Magazine gives R&D 100 Awards annually to the top 100 technological achievements of the year. Typically, these are innovations that transform basic science into useful products. The awards will be presented on October 13, in Orlando, Florida.

Brookhaven is one of 13 DOE labs, sites, and facilities that have won a total of 36 R&D 100 Awards this year. "I want to congratulate this year's R&D 100 Award winners. The Department of Energy's national laboratories and sites are at the forefront of innovation, and it is gratifying to see their work recognized once again," said Energy Secretary Steven Chu. "The cutting-edge research and development done in our national labs and facilities is helping to meet our energy challenges, strengthen our national security and enhance our economic competitiveness."

One of Brookhaven's awards was given for a device that will enhance studies that use x-ray fluorescence, a powerful technique often used in the biological, environmental and geological sciences for measuring trace element concentrations in a sample. Now being implemented in the Australian Synchrotron and Brookhaven's National Synchrotron Light Source (NSLS), it's also a way to shed light on the complexities of archeological and historical artifacts. A major roadblock, however, is the time it takes to scan the object of interest, as the system's small x-ray spot is manually moved from one location to another.

At the NSLS, researchers from Brookhaven and the Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia developed an "on-the-fly" device called the Maia x-ray microprobe detector system. The non-destructive system, which is about 1,000 times faster than previous methods, has been used to image everything from soil deposits to barley grain, to paintings created by Bertha Lum, Edward Hopper, and Rembrandt. In all cases, it has reduced the amount of experimental time that's required from days to hours.

"This method allows us to scan the sample continuously along a line," said Brookhaven physicist Peter Siddons, one of the primary developers along with Chris Ryan from CSIRO. "The exposure time is just a few milliseconds at each point, so it never really stops moving. However, we collect full spectral data as we go. That not only makes it fast, but allows a high-quality quantitative analysis as well."

Ryan added, "Maia has been a wonderful international collaboration spanning eight years and bringing together the complementary talents and shared enthusiasm of specialists from Brookhaven National Laboratory in the U.S. and the CSIRO in Australia. It's been productive, exciting, and a pleasure to work with these creative people."

The second technology recognized is a device called the multimodal optical nanoprobe, developed by Brookhaven researchers with a Swedish company, Nanofactory Instruments AB. It is used in a transmission electron microscope to measure numerous properties of a sample simultaneously, in addition to imaging.

When mounted on a transmission electron microscope, the multimodal optical nanoprobe provides simultaneous measurements of optical, electrical, mechanical, and structural properties of nano-sized materials and devices that are magnified from 1,000 to 50 million times. The combination of several different measurement techniques in the probe provides a new level of material characterization that is not possible by sequential application of those techniques. Further, these capabilities have been streamlined into a single package that, at minimal expense and difficulty, can be integrated into nearly any electron microscopy system.

The system can be divided into several sections that can be optimized for a particular set of experiments. It can be used in numerous types of experiments in many scientific fields.

Brookhaven Lab's Yimei Zhu, leader of the team that developed the nanoprobe with Nanofactory Instruments AB Chief Technology Officer Johan Angenete and his associates, said, "There are multiple applications for the nanoprobe. In particular, it allows us to shine light and measure electric current on the sample while examining its structure at atomic resolution, thus correlating properties of materials or devices with their structure. This unprecedented microscopy capability has been long desired in photovoltaics research for improving the efficiency of solar panels. Also, the device can be used for studying defects and deformation behavior of functional nanomaterials, and for imaging biological structures, such as proteins, with minimal damage to the sample."

Lennart Johansson, CEO of Nanofactory Instruments AB, said, "We are proud to have developed this groundbreaking technology with Yimei Zhu and his team at Brookhaven National Laboratory. There is a rapidly growing market for this kind of product, and we are pleased to be able to supply this much-needed device."

The DOE Office of Science funded the development of both devices, with CSIRO providing additional funding for the development of the Maia x-ray microprobe detector. Brookhaven Lab designed the laser system and holder for the multimodal optical nanoprobe. Also, Brookhaven built the laser system and funded the construction of the device's holder by Nanofactory Instruments AB. Brookhaven Science Associates, the company that manages Brookhaven Lab for DOE, holds several patents on various aspects of Maia and has applied for a patent on the nanoprobe.

####

About Brookhaven Lab
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry, and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of the State University of New York, for and on behalf of Stony Brook University, the largest academic user of Laboratory facilities; and Battelle Memorial Institute, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more (www.bnl.gov/newsroom), or follow Brookhaven Lab on Twitter (twitter.com/BrookhavenLab).

For information about the Commonwealth Scientific and Industrial Research Organisation (CSIRO), visit www.csiro.com, and for information about Nanofactory Instruments AB, see www.nanofactory.com.

For more information, please click here

Contacts:
Diane Greenberg

(631) 344-2347
or
Peter Genzer

(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Imaging

Industry’s First Dedicated Cryo-DualBeam System Automates Preparation of Frozen, Biological Samples: New Thermo Scientific Aquilos FIB/SEM protects sample integrity and enhances productivity for cryo-electron tomography workflow August 8th, 2017

Thermo Fisher Scientific Advances Cryo-EM Leadership to Drive Structural Biology Discoveries: New Thermo Scientific Krios G3i raises bar for performance, automation and time-to-results Breakthrough Thermo Scientific Glacios provides a cryo-EM entry path for a broader range of res August 8th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Tools

Scientists from the University of Manchester and Diamond Light Source work with Deben to develop and test a new compression stage to study irradiated graphite at elevated temperatures August 15th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

New Quattro Field Emission ESEM Emphasizes Versatility and Ease of Use: Thermo Scientific Quattro ESEM allows materials science researchers to study nanoscale structure in almost any material under a range of environmental conditions August 8th, 2017

Thermo Fisher Scientific’s New Talos F200i S/TEM Delivers Flexible, High-Performance Imaging: New compact S/TEM can be configured to meet specific imaging and analytical requirements for materials characterization in research laboratories August 8th, 2017

Environment

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

New approach on research and design for CQD catalysts in World Scientific NANO August 2nd, 2017

Magnetized viruses attack harmful bacteria: Rice, China team uses phage-enhanced nanoparticles to kill bacteria that foul water treatment systems August 2nd, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Landscapes give latitude to 2-D material designers: Rice University, Oak Ridge scientists show growing atom-thin sheets on cones allows control of defects August 9th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project