Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > UDE-Researchers produce high-quality graphene

Abstract:
Professor Michael Horn-von Hoegen at the Center for Nanointegration (CeNIDE) at the University Duisburg-Essen (UDE) has developed a process capable of producing a high-quality product with a single step.

UDE-Researchers produce high-quality graphene

Germany | Posted on June 7th, 2011

Graphene is the electronic miracle material of the 21st century. Until now, only sheets that were very small or of a somewhat inferior quality could be produced that were too small or not well suited for high-tech applications. Now, however, Professor Michael Horn-von Hoegen at the Center for Nanointegration (CeNIDE) at the University Duisburg-Essen (UDE) has developed a process capable of producing a high-quality product with a single step. The results of his research have been published in the journal „Applied Physics Letters‰ (Vol.98, No. 14)

The difference in scale between graphene‚s thickness and that of a sheet of paper can be compared to the difference between that same piece of paper and the height of the Bosphorus Bridge in Istanbul. Graphene conducts electricity like no other material in the world and it is extremely resilient. Until recently, it had one major flaw which could not be taken lightly: the consensus among researchers around the world was it would never exist in a stable format. Nevertheless, in 2004 the Russian scientists Andre Geim and Konstantin Novoselov succeeded in producing graphene, for which they received the Nobel Prize in Physics in 2010. UDE also has a number of projects that explore this miracle material.

Graphene is comprised of a honeycomb carbon structure only a single atom thick˜no material can be thinner than that. Of course, it is extremely laborious to produce larger sheets of the material. Even when it does work the quality of the product leaves much to be desired. This is where the research from Professor Horn-von Hoegen‚s experimental physics group comes into play. He states, „Our goal is to understand the growth of the sheet in detail, so that we can develop a Œrecipe‚ for producing graphene that is free from defects, as large as possible, and suitable for industrial applications.‰

He developed the recently-published procedure in collaboration with researchers from the universities of Cologne and Twente: Ethylene gas is used as a catalyst on the surface of an iridium crystal to produce a carbon layer that is exactly one single atom thick. Horn-von Hoegen‚s team tested the quality of the product themselves, directly following fabrication, using high resolution low energy electron diffraction (LEED). The LEED immediately reveals defects as star shaped structures. Horn-von Hoegen explained, „They may look pretty, but they indicate that the individual carbon honeycomb structures are distorted. For that reason we are delighted when the diffraction images don‚t reveal any stars˜they‚re boring, but they‚re perfect.‰

Graphene is regarded as the only two-dimensional solid object in the world. Within it, electrons move faster than in any other substance, which attests to its extreme conductivity. In battery technology, particularly given the rapidly growing interest in electric cars, the prospect of a super-conductive membrane between the battery‚s poles is especially promising. It could even replace silicon in a future generation of computers and greatly increase processing capabilities, enabling many more computations at a faster speed. This would only be possible with high-quality graphene, which makes the work of the UDE professor particularly critical.

####

For more information, please click here

Contacts:
Birte Vierjahn

Copyright © CeNIDE, University of Duisburg-Essen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Conductive Inks: booming to $2.8 billion by 2024 April 17th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Champions Oncology, Inc. April 17th, 2014

Graphene

Thinnest feasible membrane produced April 17th, 2014

Scientists observe quantum superconductor-metal transition and superconducting glass: A team including MIPT physicist observed quantum superconductor-metal transition and superconducting glass April 16th, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Chip Technology

'Exotic' material is like a switch when super thin April 18th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Discoveries

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thinnest feasible membrane produced April 17th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Announcements

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE