Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Atomic-level understanding of crystal ceramics could lead to low-power memory devices

Abstract:
Magnetic materials in which the north and south poles can be reversed with an electric field may be ideal candidates for low-power electronic devices, such as those used for ultra-high data storage. But finding a material with the right combination of magnetoelectric properties has proven a difficult challenge. Using a theoretical approach, Cornell theorists might have found one.

Atomic-level understanding of crystal ceramics could lead to low-power memory devices

Ithaca, NY | Posted on May 16th, 2011

Craig Fennie, assistant professor of applied and engineering physics, and research associate Nicole Benedek used theoretical calculations to understand exactly why and how a particular crystalline ceramic, a layered perovskite, is multiferroic. Multiferroic materials are simultaneously ferroelectric (electrically polarized) and ferromagnetic (they exhibit a permanent magnetic field). Their results were published online March 7 in Physical Review Letters, appearing later in print, and are also the subject of a "Viewpoint" in the journal Physics and a "News and Views" column in the journal Nature Materials.

A lot of materials respond to electric fields; others to magnetic fields -- but a small subset of materials called multiferroics respond to both. This discovery decades ago caused excitement due to the potential implications for, for example, magnetic storage devices that barely require power.

The Cornell researchers' density functional theory calculations revealed that octahedron rotations -- lattice distortions ubiquitous in complex crystalline materials such as perovskite -- simultaneously induce and thereby couple ferroelectricity, magnetoelectricity and ferromagnetism.

This prediction is remarkable because octahedral rotations usually cannot produce a polarization. It also lends new insight into the problem of how to introduce multiferroic order into different materials and the possibility of discovering the best materials to make low-power electronics at room temperature.

Their study demonstrates the possibility of robust, controllable coupling of magnetization and ferroelectric polarization, as well as suggesting electric field switching of the magnetization.

Benedek's work was supported by the Cornell Center for Materials Research and the National Science Foundation's Materials Research Science and Engineering Centers grant, and Fennie was supported by the Department of Energy-Basic Energy Sciences SISGR program.

####

For more information, please click here

Contacts:
Anne Ju
(607) 255-9735


Media Contact:
Blaine Friedlander
(607) 254-8093

Copyright © Cornell University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

Govt.-Legislation/Regulation/Funding/Policy

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Chip Technology

Nanometrics Announces Upcoming Investor Events November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Researchers create & control spin waves, lifting prospects for enhanced info processing November 17th, 2014

VDMA Electronics Production Equipment: Growth track for 2014 and 2015 confirmed: Business climate survey shows robust industry sector November 14th, 2014

Memory Technology

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

New materials for more powerful solar cells: Major breakthrough in solar energy November 11th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanoelectronics

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Discoveries

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Silver Nanoparticles Produced in Iran from Forest Plants Extract November 20th, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Announcements

New research project supports internationalisation in nano-research: Launch of new “Baltic Sea Network” November 22nd, 2014

3rd Iran-Proposed Nano Standard Approved by International Standard Organization November 22nd, 2014

NMTI announces breakthrough solutions for HAMR nanoantenna for next-generation ultra-high density magnetic storage November 21st, 2014

Nano Sorbents Able to Remove Pollutions Caused by Oil Derivatives November 20th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

SUNY Poly Student Awarded Fellowship with the U.S. Department of Energy's Postgraduate Research Program: Ph.D. Candidate Accepts Postmaster's Appointment To Conduct Research At Albany NanoTech Complex November 13th, 2014

MEMS Industry Group's 10th Annual Executive Conference Showcases Rapid Innovation in MEMS/Sensors: Emphasizes Spirit of Collaboration, Supporting First Open-Source Algorithm Community, New Standardization Efforts November 10th, 2014

Microrockets fueled by water neutralize chemical and biological warfare agents October 29th, 2014

New nanodevice to improve cancer treatment monitoring October 27th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE