Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The Ultimate Camo: Team to mimic camouflage skill of marine animals in high-tech materials

Hanlon and Mathger: MBL Senior Scientist Roger Hanlon and Assistant Research Scientist Lydia Mäthger test the ability of a cuttlefish to adapt to a disruptive background pattern. Photo by T. Kleindinst.
Hanlon and Mathger: MBL Senior Scientist Roger Hanlon and Assistant Research Scientist Lydia Mäthger test the ability of a cuttlefish to adapt to a disruptive background pattern. Photo by T. Kleindinst.

Abstract:
Camouflage expert Roger Hanlon of the Marine Biological Laboratory (MBL) is co-recipient of a $6 million grant from the Office of Naval Research to study and ultimately emulate the exquisite ability of some marine animals to instantly change their skin color and pattern to blend into their environment.

The Ultimate Camo: Team to mimic camouflage skill of marine animals in high-tech materials

Woods Hole, MA | Posted on April 28th, 2011

Hanlon, who has spent more than three decades studying the camouflage artistry of squid, octopus, and cuttlefish (a class of animals known as the cephalopods), is collaborating with materials scientists and nanotechnologists at Rice University toward the goal of developing materials that can mimic cephalopod camouflage.

"Our internal name for this project is ‘squid skin,' but it is really about fundamental research," says Naomi Halas, an expert in nano-optics at Rice University and the principal investigator on the four-year grant. "Our deliverable is knowledge, the basic discoveries that will allow us to make materials that are observant, adaptive, and responsive to their environment."

In 2008, Hanlon and MBL colleagues Lydia Mäthger and Steven Roberts discovered that cephalopod skin contains opsins, the same type of light-sensing proteins that function in the eyes.

"This project will enable us to explore an exciting new avenue of vision research - distributed light sensing throughout the skin," Hanlon says. "How and where that visual information is used by the nervous system is likely to uncover some novel neural circuitry."

Hanlon and his team will perform experiments with cephalopods to determine how opsin molecules receive light and aid the animal's visual system in adjusting skin patterns for communication and camouflage. A wide range of techniques will be used to accomplish these aims. The MBL team, which includes scientists Mäthger and Alan Kuzurian, will be collaborating with marine biologist Thomas Cronin of the University of Maryland, Baltimore County, on these investigations.

"This is inherently a multidisciplinary problem," Halas says. "What can we, as engineers, learn from the way these animals perceive light and color?" The project team's engineers will focus on emulating cephalopod skin using new metamaterials—materials that blur the line between material and machine.

####

About The Marine Biological Laboratory
The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

For more information, please click here

Contacts:
Diana Kenney
MBL
508-289-7139


Jade Boyd
Rice University
713-348-6778

Copyright © The Marine Biological Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Mäthger, L.M., Roberts, S. and Hanlon, R.T. 2010. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters 6: 600-603. (PDF)

Mäthger, L.M., Denton, E.J., Marshall, J. and Hanlon, R.T. 2009. Mechanisms and behavioral functions of structural coloration in cephalopods. Journal of the Royal Society Interface 6: S149-S164. (PDF)

Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M., Stone, M. O. 2008. Cephalopod coloration model. I. Squid chromatophores and iridophores. Journal of the Optical Society of America, 25 (3): 588-599. (PDF)

Mäthger, L.M., and Hanlon, R.T. 2007. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research 329: 179-186. (PDF)

Watch the video.

Related News Press

News and information

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Laboratories

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

UCLA physicists map the atomic structure of an alloy: Researchers measured the coordinates of more than 23,000 atoms in a technologically important material February 3rd, 2017

Videos/Movies

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Announcements

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Engineers shrink microscope to dime-sized device February 17th, 2017

Francis Alexander Named Deputy Director of Brookhaven Lab's Computational Science Initiative February 16th, 2017

Military

Engineers shrink microscope to dime-sized device February 17th, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Meta-lenses bring benchtop performance to small, hand-held spectrometer: Game-changing nanostructure-based lenses allow smaller devices, increased functionality February 9th, 2017

Transparent gel-based robots can catch and release live fish: Made from hydrogel, robots may one day assist in surgical operations, evade underwater detection February 2nd, 2017

Textiles/Clothing

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project