Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > The Ultimate Camo: Team to mimic camouflage skill of marine animals in high-tech materials

Hanlon and Mathger: MBL Senior Scientist Roger Hanlon and Assistant Research Scientist Lydia Mäthger test the ability of a cuttlefish to adapt to a disruptive background pattern. Photo by T. Kleindinst.
Hanlon and Mathger: MBL Senior Scientist Roger Hanlon and Assistant Research Scientist Lydia Mäthger test the ability of a cuttlefish to adapt to a disruptive background pattern. Photo by T. Kleindinst.

Abstract:
Camouflage expert Roger Hanlon of the Marine Biological Laboratory (MBL) is co-recipient of a $6 million grant from the Office of Naval Research to study and ultimately emulate the exquisite ability of some marine animals to instantly change their skin color and pattern to blend into their environment.

The Ultimate Camo: Team to mimic camouflage skill of marine animals in high-tech materials

Woods Hole, MA | Posted on April 28th, 2011

Hanlon, who has spent more than three decades studying the camouflage artistry of squid, octopus, and cuttlefish (a class of animals known as the cephalopods), is collaborating with materials scientists and nanotechnologists at Rice University toward the goal of developing materials that can mimic cephalopod camouflage.

"Our internal name for this project is ‘squid skin,' but it is really about fundamental research," says Naomi Halas, an expert in nano-optics at Rice University and the principal investigator on the four-year grant. "Our deliverable is knowledge, the basic discoveries that will allow us to make materials that are observant, adaptive, and responsive to their environment."

In 2008, Hanlon and MBL colleagues Lydia Mäthger and Steven Roberts discovered that cephalopod skin contains opsins, the same type of light-sensing proteins that function in the eyes.

"This project will enable us to explore an exciting new avenue of vision research - distributed light sensing throughout the skin," Hanlon says. "How and where that visual information is used by the nervous system is likely to uncover some novel neural circuitry."

Hanlon and his team will perform experiments with cephalopods to determine how opsin molecules receive light and aid the animal's visual system in adjusting skin patterns for communication and camouflage. A wide range of techniques will be used to accomplish these aims. The MBL team, which includes scientists Mäthger and Alan Kuzurian, will be collaborating with marine biologist Thomas Cronin of the University of Maryland, Baltimore County, on these investigations.

"This is inherently a multidisciplinary problem," Halas says. "What can we, as engineers, learn from the way these animals perceive light and color?" The project team's engineers will focus on emulating cephalopod skin using new metamaterials—materials that blur the line between material and machine.

####

About The Marine Biological Laboratory
The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

For more information, please click here

Contacts:
Diana Kenney
MBL
508-289-7139


Jade Boyd
Rice University
713-348-6778

Copyright © The Marine Biological Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Mäthger, L.M., Roberts, S. and Hanlon, R.T. 2010. Evidence for distributed light sensing in the skin of cuttlefish, Sepia officinalis. Biology Letters 6: 600-603. (PDF)

Mäthger, L.M., Denton, E.J., Marshall, J. and Hanlon, R.T. 2009. Mechanisms and behavioral functions of structural coloration in cephalopods. Journal of the Royal Society Interface 6: S149-S164. (PDF)

Sutherland, R. L., Mäthger, L. M., Hanlon, R. T., Urbas, A. M., Stone, M. O. 2008. Cephalopod coloration model. I. Squid chromatophores and iridophores. Journal of the Optical Society of America, 25 (3): 588-599. (PDF)

Mäthger, L.M., and Hanlon, R.T. 2007. Malleable skin coloration in cephalopods: selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell and Tissue Research 329: 179-186. (PDF)

Watch the video.

Related News Press

Laboratories

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

JPK opens new expanded offices in Berlin to meet the growing demand for products worldwide January 28th, 2015

Videos/Movies

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Military

Detecting chemical weapons with a color-changing film January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Textiles/Clothing

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

Laser-induced graphene 'super' for electronics: Rice University researchers test flexible, three-dimensional supercapacitors January 14th, 2015

Zinc oxide materials tapped for tiny energy harvesting devices: New research helps pave the way toward highly energy-efficient zinc oxide-based micro energy harvesting devices with applications in portable communications, healthcare and environmental monitoring, and more January 13th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE