Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Building From the Ground Up, Researchers Construct RNA Nanoparticles to Safely Deliver Long-Lasting Therapy to Cells

Peixuan Guo, PhD, Dane and Mary Louise Miller Endowed Chair in biomedical engineering with students in his lab at the Vontz Center for Molecular Studies.

Credit: University of Cincinnati
Peixuan Guo, PhD, Dane and Mary Louise Miller Endowed Chair in biomedical engineering with students in his lab at the Vontz Center for Molecular Studies.

Credit: University of Cincinnati

Abstract:
Nanotechnology researchers have known for years that RNA, the cousin of DNA, is a promising tool for nanotherapy, in which therapeutic agents can be delivered inside the body via nanoparticles. But the difficulties of producing long-lasting, therapeutic RNA that remains stable and non-toxic while entering targeted cells have posed challenges for their progress.

Building From the Ground Up, Researchers Construct RNA Nanoparticles to Safely Deliver Long-Lasting Therapy to Cells

Cincinnati, OH | Posted on April 22nd, 2011

In two new publications in the journal Molecular Therapy, University of Cincinnati (UC) biomedical engineering professor Peixuan Guo, PhD, details successful methods of producing large RNA nanoparticles and testing their safety in the delivery of therapeutics to targeted cells.

The articles, in advance online publication, represent "two very important milestones in RNA nanotherapy," says Guo.

"One problem in RNA therapy is the requirement for the generation of relatively large quantities of RNA," he says. "In this research, we focused on solving the most challenging problem of industry-scale production of large RNA molecules by a bipartite approach, finding that pRNA can be assembled from two pieces of smaller RNA modules."

Guo, Dane and Mary Louise Miller Endowed Chair of biomedical engineering, serves as director of the National Cancer Institute (NCI) Alliance for Nanotechnology in Cancer Platform Partnership Program at UC. He has focused his research on RNA for decades, pioneering its use as a versatile building block for nanotechnology, or for the engineering of functional systems at the molecular scale. In 1987, he discovered a packaging RNA (pRNA) in the bacteriophage phi29 virus which can gear a motor to package DNA into the viral protein shell. In 1998, his lab discovered that pRNA can self-assemble or be engineered into nanoparticles to gear the motor.

In his most recent research, Guo and colleagues detail multiple approaches for the construction of a functional 117-base pRNA molecule containing small interfering RNA (siRNA). siRNA has already been shown to be an efficient tool for silencing genes in cells, but previous attempts have produced chemically modified siRNA lasting only 15-45 minutes in the body and often inducing undesired immune responses.

"The pRNA particles we constructed to harbor siRNA have a half life of between five and 10 hours in animal models, are non-toxic and produce no immune response," says Guo. "The tenfold increase of circulation time in the body is important in drug development and paves the way towards clinical trials of RNA nanoparticles as therapeutic drugs."

Guo says the size of the constructed pRNA molecule is crucial for the effective delivery of therapeutics to diseased tissues.

"RNA nanoparticles must be within the range of 15 to 50 nanometers," he says, "large enough to be retained by the body and not enter cells randomly, causing toxicity, but small enough to enter the targeted cells with the aid of cell surface receptions.

In the paper, "Assembly of Therapeutic pRNA-siRNA Nanoparticles Using Bipartite Approach," Guo and his colleagues used two synthetic RNA fragments to create the 117-base pRNA, which was able to further assemble with other pRNA molecules and function in the bacteriophage phi29 viral motor to package DNA.

"The two-piece approach in pRNA synthesis overcame challenges of size limitations in chemical synthesis of RNA nanoparticles," Guo wrote. "The resulting nanoparticles were competent in delivering and releasing therapeutics to cells and silencing the genes within them. The ability to chemically synthesize these nanoparticles allows for further chemical modification of RNA for stability and specific targeting."

The second publication, "Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery," builds on that research, demonstrating that modified three-dimensional pRNA nanoparticles were readily manufactured through the two-piece approach. The modified nanoparticles were resistant to common enzymes that can attack and degrade RNA and remained chemically and metabolically stable.

Furthermore, when delivered to target cells in an animal model, the nanoparticles were non-toxic and did not induce an immune response, enabling the nanoparticles to bind to cancer cells in vivo.

Previous studies have encased therapeutic siRNA in a polymer coating or liposome for delivery to cells.

"To our knowledge, this is the first naked RNA nanoparticles to have been comprehensively examined pharmacologically in vivo and demonstrated to be safe, as well as deliver itself to tumor tissues by a specific targeting mechanism," he says. "It suggests that the pRNA nanoparticles without coating have all the preferred pharmacological features to serve as an efficient nanodelivery platform for broad medical applications."

Co-authors of "Assembly of Therapeutic pRNA-siRNA Nanoparticles Using Bipartite Approach" include Yi Shu, Mathieu Cinier, Sejal Fox and Nira Ben-Johnathan of the University of Cincinnati.

Co-authors of "Pharmacological Characterization of Chemically Synthesized Monomeric phi29 pRNA Nanoparticles for Systemic Delivery" include Sherine Abdelmawla and Songchuan Guo of Kylin Therapeutics and Purdue University, Limin Zhang, Sai M Pulukuri, Prithviraj Patankar, Patrick Conley, Joseph Trebley and Qi-Xiang Li of Kylin Therapeutics.

This study was funded by National Cancer Institute, National Institute of Biomedical Imaging and Bioengineering, National Institute of General Medical Sciences and Kylin Therapeutics Inc. Guo is co-founder of Kylin Therapuetics.

####

For more information, please click here

Contacts:
Katy Cosse
(513) 558-0207

Copyright © University of Cincinnati

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project