Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Working toward ‘smart windows’

Sarbajit Banerjee stands in front of a scanning electron microscopy image of tungsten-doped vanadium-oxide nanowires, which have a phase transition temperature close to room temperature. Photo: DOUGLAS LEVERE
Sarbajit Banerjee stands in front of a scanning electron microscopy image of tungsten-doped vanadium-oxide nanowires, which have a phase transition temperature close to room temperature. Photo: DOUGLAS LEVERE

Abstract:
New materials science research at UB could hasten the creation of "smart" windows that reflect heat from the sun on hot summer days, but let in the heat in colder weather.

The findings concern a unique class of synthetic chemical compounds that are transparent to infrared light at lower temperatures, but undergo a phase transition to begin reflecting infrared when they heat up past a certain point.

Working toward ‘smart windows’

Buffalo, NY | Posted on April 18th, 2011

An article detailing some of these discoveries appeared last week on the cover of the Journal of Physical Chemistry Letters. Additional papers have appeared online or in print in CrystEngComm, the Journal of Materials Chemistry and Physical Review B.

In the papers, UB researchers report they have managed to manipulate the trigger temperature for vanadium oxide, one such material. The advance is a crucial step toward making the compound useful for such applications as coatings for energy-saving windows.

By preparing vanadium oxide as a nanomaterial instead of in bulk, the scientists managed to lower the compound's trigger point from 153 degrees Fahrenheit to 90. Doping vanadium oxide nanowires with tungsten brought the temperature down further, to 7 degrees Fahrenheit. Molybdenum doping had a similar, but smaller, effect.

Researchers also found that they were able to induce a phase transition using an electric current instead of heat.

UB chemist Sarbajit Banerjee led the studies, collaborating with Sambandamurthy Ganapathy, UB assistant professor of physics, to head the Physical Review B research on the use of the electric current.

"Definitely, we are closer than we've ever been to being able to incorporate these materials into window coatings and other systems that sense infrared light," says Banerjee, assistant professor in the UB Department of Chemistry. "What we found is an example of how much of a difference finite size can make. You have a material like vanadium oxide, where the phase transition temperature is too high for it to be useful, and you produce it as a nanomaterial and you can then use it right away."

Banerjee and Ganapathy previously led research projects demonstrating that, in nanoscale form, two additional synthetic compounds—copper vanadate and potassium vanadate—exhibit phase transitions akin to those in vanadium oxide.

Banerjee's work has caught the attention of the National Renewable Energy Laboratory, which has contacted him to discuss developing window coatings that could improve the energy efficiency of buildings with heating or air conditioning systems. The technology could be particularly useful in places like Phoenix and Las Vegas that experience extreme summer temperatures.

Besides smart windows, vanadium oxide also could be useful in products including computer chips, night-vision instruments and missile-guidance systems, Banerjee said.

Two major awards are funding Banerjee's research on the material: A Cottrell Scholar Award from the Research Corporation for Science Advancement, announced this year, and a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators.

Both honors recognize Banerjee's accomplishments in teaching, as well as in research. He has mentored numerous graduate students, including Luisa Whittaker, Christopher J. Patridge and Jesus M. Velazquez, who appear as first authors on some of Banerjee's papers on vanadium oxide. Tai-lung Wu, supervised by Ganapathy, is the first author of the Physical Review B paper.

####

For more information, please click here

Contacts:
Sarbajit Banerjee
Chemistry
(716) 645-4140

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch a video of Sarbajit Banerjee talking about his “smart window” research.

Related News Press

News and information

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Videos/Movies

New remote-controlled microrobots for medical operations July 23rd, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

A 'bridge' of carbon between nerve tissues: A high-tech 'sponge' connects neurons in vitro (and is biocompatible in vivo) July 18th, 2016

Discoveries

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Materials/Metamaterials

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Announcements

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Energy

New nontoxic process promises larger ultrathin sheets of 2-D nanomaterials July 27th, 2016

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

An accelerated pipeline to open materials research: ORNL workflow system unites imaging, algorithms, and HPC to advance materials discovery and design July 24th, 2016

Researchers discover key mechanism for producing solar cells: Better understanding of perovskite solar cells could boost widespread use July 21st, 2016

Home

Industrial Nanotech, Inc. Expands Distribution Network in US and Internationally May 9th, 2016

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

Construction

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Nanotechnology is changing everything from medicine to self-healing buildings: Nanotechnology is so small it's measured in billionths of metres, and it is revolutionising every aspect of our lives April 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic