Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Working toward ‘smart windows’

Sarbajit Banerjee stands in front of a scanning electron microscopy image of tungsten-doped vanadium-oxide nanowires, which have a phase transition temperature close to room temperature. Photo: DOUGLAS LEVERE
Sarbajit Banerjee stands in front of a scanning electron microscopy image of tungsten-doped vanadium-oxide nanowires, which have a phase transition temperature close to room temperature. Photo: DOUGLAS LEVERE

Abstract:
New materials science research at UB could hasten the creation of "smart" windows that reflect heat from the sun on hot summer days, but let in the heat in colder weather.

The findings concern a unique class of synthetic chemical compounds that are transparent to infrared light at lower temperatures, but undergo a phase transition to begin reflecting infrared when they heat up past a certain point.

Working toward ‘smart windows’

Buffalo, NY | Posted on April 18th, 2011

An article detailing some of these discoveries appeared last week on the cover of the Journal of Physical Chemistry Letters. Additional papers have appeared online or in print in CrystEngComm, the Journal of Materials Chemistry and Physical Review B.

In the papers, UB researchers report they have managed to manipulate the trigger temperature for vanadium oxide, one such material. The advance is a crucial step toward making the compound useful for such applications as coatings for energy-saving windows.

By preparing vanadium oxide as a nanomaterial instead of in bulk, the scientists managed to lower the compound's trigger point from 153 degrees Fahrenheit to 90. Doping vanadium oxide nanowires with tungsten brought the temperature down further, to 7 degrees Fahrenheit. Molybdenum doping had a similar, but smaller, effect.

Researchers also found that they were able to induce a phase transition using an electric current instead of heat.

UB chemist Sarbajit Banerjee led the studies, collaborating with Sambandamurthy Ganapathy, UB assistant professor of physics, to head the Physical Review B research on the use of the electric current.

"Definitely, we are closer than we've ever been to being able to incorporate these materials into window coatings and other systems that sense infrared light," says Banerjee, assistant professor in the UB Department of Chemistry. "What we found is an example of how much of a difference finite size can make. You have a material like vanadium oxide, where the phase transition temperature is too high for it to be useful, and you produce it as a nanomaterial and you can then use it right away."

Banerjee and Ganapathy previously led research projects demonstrating that, in nanoscale form, two additional synthetic compounds—copper vanadate and potassium vanadate—exhibit phase transitions akin to those in vanadium oxide.

Banerjee's work has caught the attention of the National Renewable Energy Laboratory, which has contacted him to discuss developing window coatings that could improve the energy efficiency of buildings with heating or air conditioning systems. The technology could be particularly useful in places like Phoenix and Las Vegas that experience extreme summer temperatures.

Besides smart windows, vanadium oxide also could be useful in products including computer chips, night-vision instruments and missile-guidance systems, Banerjee said.

Two major awards are funding Banerjee's research on the material: A Cottrell Scholar Award from the Research Corporation for Science Advancement, announced this year, and a National Science Foundation CAREER award, the foundation's most prestigious award for junior investigators.

Both honors recognize Banerjee's accomplishments in teaching, as well as in research. He has mentored numerous graduate students, including Luisa Whittaker, Christopher J. Patridge and Jesus M. Velazquez, who appear as first authors on some of Banerjee's papers on vanadium oxide. Tai-lung Wu, supervised by Ganapathy, is the first author of the Physical Review B paper.

####

For more information, please click here

Contacts:
Sarbajit Banerjee
Chemistry
(716) 645-4140

Copyright © University of Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Watch a video of Sarbajit Banerjee talking about his “smart window” research.

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Videos/Movies

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Discoveries

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

NUS researchers invent new test kit for quick, accurate and low-cost screening of diseases: Test results are denoted by a color change and could be further analyzed by a smartphone app, making it attractive as a point-of-care diagnostic device September 19th, 2018

Materials/Metamaterials

How a tetrahedral substance can be more symmetrical than a spherical atom: A new type of symmetry September 14th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Cannibalistic materials feed on themselves to grow new nanostructures September 1st, 2018

Environmentally friendly photoluminescent nanoparticles for more vivid display colors: Osaka University-led researchers created a new type of light-emitting nanoparticle that is made of ternary non-toxic semiconductors to help create displays and LED lighting with better colors t August 29th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Energy

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

September 5th, 2018

Rice U. lab probes molecular limit of plasmonics: Optical effect detailed in organic molecules with fewer than 50 atoms September 5th, 2018

Home

Research gives new ray of hope for solar fuel April 27th, 2018

This Wired Wallpaper Could Turn Your Whole House Into A Fire Alarm April 2nd, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Construction

A Comprehensive Guide: The Future of Nanotechnology September 13th, 2018

Weak hydrogen bonds key to strong, tough infrastructure: Rice University lab simulates polymer-cement composites to find strongest, toughest materials January 29th, 2018

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Corrosion in real time: UCSB researchers get a nanoscale glimpse of crevice and pitting corrosion as it happens September 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project