Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hot off the Press: Nanoscale Gutenberg-style printing

© Wiley-VCH
© Wiley-VCH

Abstract:
When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team of scientists at Monash University (Australia) and the Lawrence Berkeley National Laboratory (USA) have developed a nanoprinting process modeled on Gutenberg's printing method. Their goal is the simple, inexpensive production of nanotechnological components for solar cells, biosensors, and other electronic systems. As the researchers report in the journal Angewandte Chemie, their "ink" consists of gold nanoparticles, and the specific bonding between DNA molecules ensures its transfer to the substrate.

Hot off the Press: Nanoscale Gutenberg-style printing

Australia | Posted on April 15th, 2011

Nanopatterns with extremely high resolution are not difficult to produce with today's technology. However, the methods used so far are analogous those used to produce the hand-written books of the era before Gutenberg; they are too slow and work-intensive for commercial fabrication. "New nanoprinting techniques offer an interesting solution," says Bach. Along with co-workers, he has developed a process that works with a reusable "printing plate".

The printing plate is a silicon wafer—like those used for the production of computer chips—that has been coated with a photoresist and covered with a mask. The wafer is then exposed to an electron beam (electron beam lithography). In the areas exposed to the beam, the photoresist is removed, exposing the wafer for etching. The wafer is then coated with gold. When the photoresist layer is removed, the gold only sticks to the etched areas. Polyethylene glycol chains are then bound specifically to the gold through sulfur-hydrogen groups. The chains have positively charged amino groups at their ends. The completed printing plate is then dipped into the "ink", a solution of gold nanoparticles coated with negatively charged DNA molecules. Electrostatic attraction causes the DNA to stick to the amino groups, binding the gold nanoparticles to the gold-patterned areas of the printing plate.

The "paper" is a silicon wafer coated with a whisper-thin gold film and a layer of DNA. These DNA strands are complementary to those on the gold nanoparticles, with which they pair up to form double strands. This type of bond is stronger than the electrostatic attraction between the DNA and the amino groups. When the "paper" is pressed onto the "printing plate" and then removed, the gold nanoparticles from the ink remain stuck to the "paper" in the desired pattern. The "printing plate" can be cleaned and reused multiple times. Says Bach: "Our results demonstrate that it is possible to produce affordable printed elements based on nanoparticles."

####

For more information, please click here

Contacts:
Udo Bach
Monash University
Clayton (Australia)

Phone:+61 3 990 56264

Copyright © ohn Wiley & Sons, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Sensors

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Tip-assisted chemistry enables chemical reactions at femtoliter scale November 16th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanoelectronics

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Supersonic spray yields new nanomaterial for bendable, wearable electronics: Film of self-fused nanowires clear as glass, conducts like metal November 23rd, 2016

Announcements

In IEDM 2016 Keynote, Leti CEO Says ‘Hyperconnectivity’, Human-focused Research and the IOT Promise Profound, Positive Changes December 7th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Nanobiotechnology

Fast, efficient sperm tails inspire nanobiotechnology December 5th, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project