Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Hot off the Press: Nanoscale Gutenberg-style printing

© Wiley-VCH
© Wiley-VCH

Abstract:
When Gutenberg developed the principles of modern book printing, books became available to the masses. Hoping to bring technology capable of mass production to the nanometer scale, Udo Bach and this team of scientists at Monash University (Australia) and the Lawrence Berkeley National Laboratory (USA) have developed a nanoprinting process modeled on Gutenberg's printing method. Their goal is the simple, inexpensive production of nanotechnological components for solar cells, biosensors, and other electronic systems. As the researchers report in the journal Angewandte Chemie, their "ink" consists of gold nanoparticles, and the specific bonding between DNA molecules ensures its transfer to the substrate.

Hot off the Press: Nanoscale Gutenberg-style printing

Australia | Posted on April 15th, 2011

Nanopatterns with extremely high resolution are not difficult to produce with today's technology. However, the methods used so far are analogous those used to produce the hand-written books of the era before Gutenberg; they are too slow and work-intensive for commercial fabrication. "New nanoprinting techniques offer an interesting solution," says Bach. Along with co-workers, he has developed a process that works with a reusable "printing plate".

The printing plate is a silicon wafer—like those used for the production of computer chips—that has been coated with a photoresist and covered with a mask. The wafer is then exposed to an electron beam (electron beam lithography). In the areas exposed to the beam, the photoresist is removed, exposing the wafer for etching. The wafer is then coated with gold. When the photoresist layer is removed, the gold only sticks to the etched areas. Polyethylene glycol chains are then bound specifically to the gold through sulfur-hydrogen groups. The chains have positively charged amino groups at their ends. The completed printing plate is then dipped into the "ink", a solution of gold nanoparticles coated with negatively charged DNA molecules. Electrostatic attraction causes the DNA to stick to the amino groups, binding the gold nanoparticles to the gold-patterned areas of the printing plate.

The "paper" is a silicon wafer coated with a whisper-thin gold film and a layer of DNA. These DNA strands are complementary to those on the gold nanoparticles, with which they pair up to form double strands. This type of bond is stronger than the electrostatic attraction between the DNA and the amino groups. When the "paper" is pressed onto the "printing plate" and then removed, the gold nanoparticles from the ink remain stuck to the "paper" in the desired pattern. The "printing plate" can be cleaned and reused multiple times. Says Bach: "Our results demonstrate that it is possible to produce affordable printed elements based on nanoparticles."

####

For more information, please click here

Contacts:
Udo Bach
Monash University
Clayton (Australia)

Phone:+61 3 990 56264

Copyright © ohn Wiley & Sons, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Sensors

Lawrence Livermore researchers develop efficient method to produce nanoporous metals November 25th, 2014

Cooling with the coldest matter in the world November 24th, 2014

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Nanoelectronics

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Leti Will Present 17 Papers at 2014 IEDM; the Highest-ever Total Includes Four Invited Papers: Institute also Will Present its Latest Results in Key Technologies and Its Roadmap for Silicon Nano-technologies at Workshop November 13th, 2014

Breakthrough in molecular electronics paves the way for DNA-based computer circuits in the future: DNA-based programmable circuits could be more sophisticated, cheaper and simpler to make October 27th, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Announcements

SEMATECH to Showcase Innovation and Advances in Manufacturing at SEMICON Japan 2014: SEMATECH experts will share the latest techniques, emerging trends and best practices in advanced manufacturing strategies and methodologies November 26th, 2014

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts November 26th, 2014

The mysterious 'action at a distance' between liquid containers November 26th, 2014

'Giant' charge density disturbances discovered in nanomaterials: Juelich researchers amplify Friedel oscillations in thin metallic films November 26th, 2014

Nanobiotechnology

Quantum mechanical calculations reveal the hidden states of enzyme active sites November 20th, 2014

Tokyo Institute of Technology research: Protein-engineered cages aid studies of cell functions November 19th, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Implementation of DNA Chains in Designing Nanospin Pieces November 9th, 2014

Solar/Photovoltaic

Research yields material made of single-atom layers that snap together like Legos November 25th, 2014

Blu-ray disc can be used to improve solar cell performance: Data storage pattern transferred to solar cell increases light absorption November 25th, 2014

UO-industry collaboration points to improved nanomaterials: University of Oregon microscope puts spotlight on the surface structure of quantum dots for designing new solar devices November 20th, 2014

Eight19 secures £1m funding: Investment to develop production technology, and expand commercial activities for organic photovoltaics November 19th, 2014

Printing/Lithography/Inkjet/Inks

Canatu Launches CNB In-Mold Film for Transparent Touch on 3D Surfaces –in Cars, Household Appliances, Wearables, Portables November 20th, 2014

SouthWest NanoTechnologies to Demonstrate 3D Capacitive Touch Sensor Featuring Transparent, Thermoformed Carbon Nanotube Ink at Printed Electronics USA 2014 (Booth J25) -- “Conductive and Semiconducting Single-Wall Carbon Nanotube Inks” will be Topic of Company Presentation November 10th, 2014

Longhorn beetle inspires ink to fight counterfeiting November 5th, 2014

'Nanomotor lithography' answers call for affordable, simpler device manufacturing October 31st, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More












ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE