Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Abstract:
A new strategy for fabricating graphene-based transistors—one that relies on materials and methods compatible with those used in the microelectronics industry—has been developed by researchers at IBM (Nature, DOI: 10.1038/nature09979). The work may lead to commercially viable techniques for manufacturing electronic devices that exploit the unique properties of graphene, a layer of carbon one atom thick.

New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Washington, DC | Posted on April 12th, 2011

Graphene's outstanding electronic and other properties have sparked a wave of research aimed at making circuit components based on the ultrathin material. The goal is to use graphene to make circuit elements that are smaller and that outperform today's devices.

With that goal in mind, a number of research teams have incorporated graphene electrodes into radio-frequency (RF) transistors, fast-acting signal amplifiers that play a central role in wireless communication systems. But the graphene electrodes in the fastest of those transistors are prepared by a laborious manual procedure.

Graphene can be prepared more efficiently in larger batches via vapor deposition methods. But those procedures generally call for depositing the film on a layer of silicon dioxide, which adversely affects the electronic performance of graphene devices.

To sidestep those limitations, Yanqing Wu, Yu-ming Lin, Phaedon Avouris, and coworkers at IBM's Thomas J. Watson Research Center developed a vapor deposition method in which graphene ends up on diamond-like carbon, a material well-known to the semiconductor industry with desirable electronic properties. Initial tests show that RF transistors made via the new method operate at very high frequencies and work well even at cryogenic temperatures.

"The approach of the IBM team is very interesting because it is compatible with common semiconductor processing," says Frank Schwierz, a device physicist at the Technical University of Ilmenau, in Germany. At this early stage, before the fabrication method has been optimized, Schwierz is cautious about calling the technique a breakthrough. "But it may turn out to be very useful in the future," he says.

####

For more information, please click here

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature, DOI: 10.1038/nature09979

Related News Press

News and information

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Graphene/ Graphite

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Making quantum puddles: Physicists discover how to create the thinnest liquid films ever June 13th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

Unzipping graphene nanotubes into nanoribbons: New study shows elegant mathematical solution to understand how the flow of electrons changes when carbon nanotubes turn into zigzag nanoribbons June 6th, 2018

Chip Technology

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

Nanoelectronics

GLOBALFOUNDRIES Surpasses $2 Billion in Design Win Revenue on 22FDX® Technology : With 50 client designs and growing, 22FDX proves its value as a cost-effective solution for power-sensitive applications July 9th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Leti Presenting Strategic Vision and Hosting a Workshop at SEMICON West: “From Electrons to Photons” Leti Workshop and CEO Media Briefing Set for Tuesday, July 10 in W Hotel, San Francisco June 12th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Announcements

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project