Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Abstract:
A new strategy for fabricating graphene-based transistors—one that relies on materials and methods compatible with those used in the microelectronics industry—has been developed by researchers at IBM (Nature, DOI: 10.1038/nature09979). The work may lead to commercially viable techniques for manufacturing electronic devices that exploit the unique properties of graphene, a layer of carbon one atom thick.

New Route To Graphene Devices - Nanoelectronics: Procedure draws on industry-compatible methods and materials

Washington, DC | Posted on April 12th, 2011

Graphene's outstanding electronic and other properties have sparked a wave of research aimed at making circuit components based on the ultrathin material. The goal is to use graphene to make circuit elements that are smaller and that outperform today's devices.

With that goal in mind, a number of research teams have incorporated graphene electrodes into radio-frequency (RF) transistors, fast-acting signal amplifiers that play a central role in wireless communication systems. But the graphene electrodes in the fastest of those transistors are prepared by a laborious manual procedure.

Graphene can be prepared more efficiently in larger batches via vapor deposition methods. But those procedures generally call for depositing the film on a layer of silicon dioxide, which adversely affects the electronic performance of graphene devices.

To sidestep those limitations, Yanqing Wu, Yu-ming Lin, Phaedon Avouris, and coworkers at IBM's Thomas J. Watson Research Center developed a vapor deposition method in which graphene ends up on diamond-like carbon, a material well-known to the semiconductor industry with desirable electronic properties. Initial tests show that RF transistors made via the new method operate at very high frequencies and work well even at cryogenic temperatures.

"The approach of the IBM team is very interesting because it is compatible with common semiconductor processing," says Frank Schwierz, a device physicist at the Technical University of Ilmenau, in Germany. At this early stage, before the fabrication method has been optimized, Schwierz is cautious about calling the technique a breakthrough. "But it may turn out to be very useful in the future," he says.

####

For more information, please click here

Copyright © American Chemical Society (ACS)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Nature, DOI: 10.1038/nature09979

Related News Press

News and information

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Graphene/ Graphite

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Graphene: Progress, not quantum leaps May 23rd, 2016

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Chip Technology

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Attosecond physics: A switch for light-wave electronics May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic