Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Researchers find replacement for rare material indium tin oxide

4-point conductivity measurement of the new transparent conducting film developed by prof. Cor Koning (left) and prof. Paul van der Schoot (right). The black pot contains a dispersion of carbon nanotubes in water, and the white pot contains the conducting latex. Photo: Bart van Overbeeke.
4-point conductivity measurement of the new transparent conducting film developed by prof. Cor Koning (left) and prof. Paul van der Schoot (right). The black pot contains a dispersion of carbon nanotubes in water, and the white pot contains the conducting latex. Photo: Bart van Overbeeke.

Abstract:
Researchers at Eindhoven University of Technology (TU/e, Netherlands) have developed a replacement for indium tin oxide (ITO), an important material used in displays for all kinds of everyday products such as TVs, telephones and laptops, as well as in solar cells. Unfortunately indium is a rare metal, and the available supplies are expected to be virtually exhausted within as little as ten years. The replacement material is a transparent, conducting film produced in water, and based on electrically conducting carbon nanotubes and plastic nanoparticles. It is made of commonly available materials, and on top of that is also environment-friendly. The results, which also provide new insights into conduction in complex composite materials, were published online yesterday 10 April by the scientific journal Nature Nanotechnology.

Researchers find replacement for rare material indium tin oxide

Eidhoven, The Netherlands | Posted on April 11th, 2011

The research team has been able to achieve higher conductivity by combining low concentrations of carbon nanotubes and conducting latex in a low-cost polystyrene film. The nanotubes and the latex together account for less than 1 percent of the weight of the conducting film. That is important, because a high concentration of carbon nanotubes makes the film black and opaque, so the concentration needs to be kept as low as possible. The research team was led by theoretical physicist Paul van der Schoot and polymer chemist Cor Koning. Post-doc Andriy Kyrylyuk is the first author of the paper in Nature Nanotechnology.

The researchers use standard, widely available nanotubes which they dissolve in water. Then they add conducting latex (a solution of polymer beads in water), together with a binder in the form of polystyrene beads. When the mixture is heated, the polystyrene beads fuse together to form the film, which contains a conducting network of nanotubes and beads from the conducting latex. The water, which only serves as a dispersing agent in production, is removed by freeze-drying. The ‘formula' is not a question of good luck, as the researchers first calculated the expected effects and also understand how the increased conductivity works.

The conductivity of the transparent e film is still a factor 100 lower than that of indium tin oxide. But Van der Schoot and Koning expect that the gap can quickly be closed. "We used standard carbon nanotubes, a mixture of metallic conducting and semiconducting tubes", says Cor Koning. "But as soon as you start to use 100 percent metallic tubes, the conductivity increases greatly. The production technology for 100 percent metallic tubes has just been developed, and we expect the price to fall rapidly." However the conductivity of the film is already good enough to be used immediately as an antistatic layer for displays, or for EMI shielding to protect devices and their surroundings against electromagnetic radiation.

The film has an important advantage over ITO: it is environment-friendly. All the materials are water based, and no heavy metals such as tin are used. The new film is also a good material for flexible displays.

The researchers themselves are very positive about the diversity of their team, which they believe made an important contribution to the results. "We had a unique combination of theoreticians, modeling specialists and people to do practical experiments", says Paul van der Schoot. "Without that combination we wouldn't have succeeded."

The article ‘'Controlling Electrical Percolation in Multi-Component Carbon Nanotube Dispersions' was published yesterday, Sunday 10 april, on the website of the journal Nature Nanotechnology (DOI: 10.1038/NNANO.2011.40). The research forms part of the Functional Polymer Systems research program at the Dutch Polymer Institute (DPI), which provided financial support for this project. Prof. Cor Koning is with the Polymer Chemistry group (Department of Chemical Engineering and Chemistry) and prof. Paul van der Schoot is with the Theory of Polymers and Soft Matter group (Department of Applied Physics) of Eindhoven University of Technology. The other authors of the article are Andriy Kyrylyuk (first author), Marie Claire Hermant, Tanja Schilling and Bert Klumperman.

Andriy Kyrylyuk is the first author of the paper in Nature Nanotechnology. DOI: 10.1038/NNANO.2011.40

####

For more information, please click here

Contacts:
Ivo Jongsma
+31 40 247 2110

Copyright © AlphaGalileo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Display technology/LEDs/SS Lighting/OLEDs

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Nanocrystalline LEDs: Red, green, yellow, blue ... August 7th, 2017

Chip Technology

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Killing cancer in the heat of the moment: A new method efficiently transfers genes into cells, then activates them with light. This could lead to gene therapies for cancers July 9th, 2017

Tests show no nanotubes released during utilisation of nanoaugmented materials June 9th, 2017

Discoveries

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Announcements

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Energy

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project