Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Expanding the Degrees of Surface Freezing: Molecular ordering phenomenon found at interface between complex liquids and solids

Alexei Tkachenko, Htay Hlaing and Ben Ocko at an experimental end station at the NSLS.
Alexei Tkachenko, Htay Hlaing and Ben Ocko at an experimental end station at the NSLS.

Abstract:
As part of the quest to form perfectly smooth single-molecule layers of materials for advanced energy, electronic, and medical devices, researchers at the U.S. Department of Energy's Brookhaven National Laboratory have discovered that the molecules in thin films remain frozen at a temperature where the bulk material is molten. Thin molecular films have a range of applications extending from organic solar cells to biosensors, and understanding the fundamental aspects of these films could lead to improved devices.

Expanding the Degrees of Surface Freezing: Molecular ordering phenomenon found at interface between complex liquids and solids

Upton, NY | Posted on March 30th, 2011

The study, which appears in the April 1, 2011, edition of Physical Review Letters (now online at: link.aps.org/doi/10.1103/PhysRevLett.106.137801), is the first to directly observe "surface freezing" at the buried interface between bulk liquids and solid surfaces.

"In most materials, you expect that the surface will start to disorder and eventually melt at a temperature where the bulk remains solid," said Brookhaven physicist Ben Ocko, who collaborated on the research with scientists from the European Synchrotron Radiation Facility (ESRF), in France, and Bar-Ilan University, in Israel. "This is because the molecules on the outside are less confined than those packed in the deeper layers and much more able to move around. But surface freezing contradicts this basic idea. In surface freezing, the interfacial layers freeze before the bulk."

In the early 1990s, two independent teams (one at Brookhaven) made the first observation of surface freezing at the vapor interface of bulk alkanes, organic molecules similar to those in candle wax that contain only carbon and hydrogen atoms. Surface freezing has since been observed in a range of simple chain molecules and at various interfaces between them.

"The mechanics of surface freezing are still a mystery," said Bar Ilan scientist Moshe Deutsch. "It's puzzling why alkanes and their derivatives show this unusual effect, while virtually all other materials exhibit the opposite, surface melting, effect."

In the most recent study, the researchers discovered that surface freezing also occurs at the interface between a liquid and a solid surface. In a temperature-controlled environment at Brookhaven's National Synchrotron Light Source (NSLS, http://www.nsls.bnl.gov/) and the ESRF, the group made contact between a piece of highly polished sapphire and a puddle of liquid alkanol -- a long-chain alcohol. The researchers shot a beam of high-intensity x-rays through the interface and by measuring how the x-rays reflected off the sample, the group revealed that the alkanol molecules at the sapphire surface behave very differently from those in the bulk liquid.

According to ESRF scientist Diego Pontoni, "Surprisingly, the alkanol molecules form a perfect frozen monolayer at the sapphire interface at temperatures where the bulk is still liquid." At sufficiently high temperatures, about 30 degrees Celsius above the melting temperature of the bulk alkanol, the monolayer also melts.

The temperature range over which this frozen monolayer exists is about 10 times greater than what's observed at the liquid-vapor interfaces of similar materials. According to Alexei Tkachenko, a theoretical physicist who works at Brookhaven's Center for Functional Nanomaterials (CFN, www.bnl.gov/cfn/), "The temperature range of the surface-frozen layer and its temperature-dependent thickness can be described by a very simple model that we developed. What is remarkable is that the surface layer does not freeze abruptly as in the case of ice, or any other crystal. Rather, a smooth transition occurs over a temperature range of several degrees."

Said Ocko, "These films are better ordered and smoother than all other organic monolayer films created to date."

Moshe Deutsch added, "The results of this study and the theoretical framework which it provides may lead to new ideas on how to make defect-free, single molecule-thick films."

Funding for this work was provided by the U.S. Department of Energy's Office of Science and the U.S.-Israel Binational Science Foundation.

The Center for Functional Nanomaterials at Brookhaven National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

Visit Brookhaven Lab's electronic newsroom for links, news archives, graphics, and more at www.bnl.gov/newsroom , or follow Brookhaven Lab on Twitter, twitter.com/BrookhavenLab .

For more information, please click here

Contacts:
Peter Genzer

(631) 344-3174
or
Karen McNulty Walsh

(631) 344-8350

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

News and information

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Thin films

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Laboratories

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Chip Technology

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Bringing the atomic world into full color: Researchers turn atomic force microscope measurements into color images October 19th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single Ďsolitonsí promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Nanoelectronics

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

Seeing the next dimension of computer chips: Researchers image perfectly smooth side-surfaces of 3-D silicon crystals with a scanning tunneling microscope, paving the way for smaller and faster computing devices October 11th, 2017

Columbia engineers invent breakthrough millimeter-wave circulator IC October 6th, 2017

Tungsten offers nano-interconnects a path of least resistance: Crystalline tungsten shows insight and promise in addressing the challenges of electrical interconnects that have high resistivity at the nanoscale October 4th, 2017

Discoveries

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Announcements

A step closer to understanding quantum mechanics: Swansea Universityís physicists develop a new quantum simulation protocol October 22nd, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project