Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > JPK Instruments launch the NanoWizard® 3 NanoScience AFM

JPK's NanoWizard® 3 NanoScience AFM
JPK's NanoWizard® 3 NanoScience AFM

Abstract:
JPK Instruments, a world-leading manufacturer of nanoanalytic instrumentation for research in life sciences and soft matter, continues to expand its family of high performance research systems with the announcement of the availability of the NanoWizard® 3 NanoScience AFM system.

JPK Instruments launch the NanoWizard® 3 NanoScience AFM

Berlin, Germany | Posted on March 23rd, 2011

Building relationships with the SPM community and collaborating with users worldwide has enabled JPK to develop powerful and flexible systems. Designing with upgradeability in mind guarantees a safe investment for users and an international team of experienced scientists and developers takes care of their service and support.

The resulting NanoWizard® 3 NanoScience system design provides the highest AFM performance in liquids and air, integrated with optical microscopy. It provides optimum imaging in air and liquid for single molecules, polymers and nanomaterials. The tip-scanning head equipped with a flexure scanner gives highest flexibility for a large variety of different samples. In particular, large sample size scanning is possible. The expanded flexibility and modularity of design coupled with the widest range of operation modes and accessories from electrochemistry to the tip-assisted optics module makes this the ideal platform for multiple users and applications.

The core of the new system family is HyperDrive™, a SuperResolution AFM imaging technique. With extremely low tip-sample interactions, samples are never damaged. It is available with the NanoWizard® 3 AFM head and the new Vortis™ high bandwidth, low noise control electronics. The system is extremely stable to drift and has the ability to detect the smallest cantilever deflections enabling some of the most stunning images ever produced in a commercial system. This digital controller has been built with flexible operation for the user in mind. The NanoWizard® 3 is the only AFM system on the market which is designed for optimal use in liquid and comes with a vapour barrier, encapsulated piezos and a variety of dedicated liquid cells for applications ranging from single molecule experiments to corrosion in an electrochemical environment.

As JPK's CTO, Torsten Jähnke, says - "Everywhere where AFM and optics, AFM in liquid and high quality AFM are needed, JPK is the right partner. We do not do every AFM application but what we do, we do with passion and perfection."

NanoWizard® 3 is a truly state-of-the-art designed system providing the broadest possible range of experimental options to the user: from single molecule force measurements to nanoindentation experiments applying JPK's unique ExperimentPlanner™ and RampDesigner™ control routines.

JPK develop, engineer and manufacture instrumentation in Germany to the world-recognized standards of German precision engineering, quality and functionality. For further details on the NanoWizard® and other products in the JPK family of nanoscale characterization systems, please contact JPK on +49 30533112070 or visit the JPK web site (www.jpk.com).

####

About JPK Instruments (JPK)
JPK Instruments AG is a world-leading manufacturer of nanoanalytic instruments - particularly atomic force microscope (AFM) systems and optical tweezers - for a broad range of applications reaching from soft matter physics to nano-optics, from surface chemistry to cell and molecular biology. From its earliest days applying atomic force microscope (AFM) technology, JPK has recognized the opportunities provided by nanotechnology for transforming life sciences and soft matter research. This focus has driven JPK’s success in uniting the worlds of nanotechnology tools and life science applications by offering cutting-edge technology and unique applications expertise. Headquartered in Berlin and with direct operations in Dresden, Cambridge (UK), Singapore, Tokyo (Japan) and Paris (France), JPK maintains a global network of distributors and support centers and provides on the spot applications and service support to an ever-growing community of researchers.

For further information, please contact JPK direct or their marketing partners, NetDyaLog, who will also provide high resolution images for your use.

For more information, please click here

Contacts:
Jezz Leckenby
NetDyaLog Limited
T: +44 (0) 1799 521881
M: +44 (0) 7843 012997

or
Claudia Boettche
JPK Instruments
T: +49 (0) 30 5331 12070

Copyright © JPK Instruments (JPK)

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Events/Classes

Researchers demonstrate co-propagation of quantum and classical signals: Study shows that quantum encryption can be implemented in existing fiber networks January 20th, 2023

CEA & Partners Present ‘Powerful Step Towards Industrialization’ Of Linear Si Quantum Dot Arrays Using FDSOI Material at VLSI Symposium: Invited paper reports 3-step characterization chain and resulting methodologies and metrics that accelerate learning, provide data on device pe June 17th, 2022

June Conference in Grenoble, France, to Explore Pathways to 6G Applications, Including ‘Internet of Senses’, Sustainability, Extended Reality & Digital Twin of Physical World: Organized by CEA-Leti, the Joint EuCNC and 6G Summit Sees Telecom Sector as an ‘Enabler for a Sustainabl June 1st, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project