Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brookhaven Lab's New Light Source Halfway There Construction passes 50-percent milestone; magnet installation begins

NSLS-II construction site
NSLS-II construction site

Abstract:
The U.S. Department of Energy's Brookhaven National Laboratory is now halfway toward completing construction of the National Synchrotron Light Source II (NSLS-II), a powerful x-ray microscope nearly half a mile in circumference. Construction started in 2009 on the $912-million facility.

Brookhaven Lab's New Light Source Halfway There Construction passes 50-percent milestone; magnet installation begins

Upton, NY | Posted on March 22nd, 2011

Ready for research in 2015, NSLS-II will be one of the world's most advanced light sources, providing sophisticated new tools for science that will enhance national and energy security and help drive abundant, safe and clean energy technologies.

"The 50-percent mark is a major construction milestone," said Steve Dierker, Associate Laboratory Director for Photon Sciences and NSLS-II Project Director. "It means that half of the planned work on the project is finished." With this achievement coming in March 2011, the NSLS-II project is well ahead of schedule.

In 2009, the project received $150 million from the American Recovery and Reinvestment Act, money that came ahead of the baseline schedule and allowed construction to advance more quickly than originally planned.

During its construction and operation, NSLS-II is expected to create more than 1,250 construction jobs and 450 scientific, engineering and support jobs, plus additional jobs at U.S. material suppliers and service providers. Several dozen contractors, mostly based on Long Island, are currently working on the project.

Conventional construction in the project is divided into two major segments. Torcon serves as the prime contractor for the ring building, which will house the electron accelerator and beamlines that are the heart of NSLS-II. Laboratory-office buildings, which E.W. Howell is constructing, will be attached around the exterior of the ring building.

The circular ring building, encompassing 400,000 square feet, consists of seven sections. Construction is now substantially complete on the first ring section of 70,000 square feet, enabling Brookhaven Lab to take beneficial occupancy of the first fifth of the ring. Beneficial occupancy allows the NSLS-II project team to begin installing accelerator components and beamlines for experiments.

Taking beneficial occupancy of a portion of the ring building is a second major milestone, according to Dierker. Up until now, all activity in the ring building has involved conventional construction, including site preparation; concrete work; structural steel; mechanical, electrical and plumbing systems; and the building enclosure - roof and walls.

"Beneficial occupancy enables us to begin installing the first of 826 high-precision magnets destined for the main accelerator ring," said Dierker. The first, fully equipped magnet girder, 14 feet long and holding multiple magnets, will be placed in the ring building in March. This is a third significant milestone for the NSLS-II project.

In brief, NSLS-II will work by shooting electrons through the center of each magnet, where powerful magnetic fields will contain and steer the particles in a nearly circular path. Light emitted by electrons traveling around the ring will be shunted to beamlines, a collection of scientific instruments used to do experiments.

NSLS-II will enable scientists to focus on some of the nation's most important scientific challenges at the nanoscale level, including clean, affordable energy; molecular electronics; and high-temperature superconductors. NSLS-II will also be used to study the smallest crystals in structural biology.

Funded by the Department of Energy's Office of Science, the NSLS-II construction project is scheduled to be completed by June 2015.

-Written by Mona S. Rowe

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Media contacts:
Kendra Snyder

(631) 344-8191
or
Peter Genzer

(631) 344-3174??

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

Laboratories

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Imaging

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Openings/New facilities/Groundbreaking/Expansion

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Announcements

Self-assembling particles brighten future of LED lighting January 18th, 2017

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Tools

Distinguishing truth under the surface: electrostatic or mechanic December 31st, 2016

Nanomechanics Inc. Continues Growth in Revenue and Market Penetration: Leading nanoindentation company reports continued growth in revenues and distribution channels on national and international scales December 27th, 2016

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

Energy

Dressing a metal in various colors: DGIST research developed a technology to coat metal with several nanometers of semiconducting materials January 17th, 2017

Stability challenge in perovskite solar cell technology: New research reveals intrinsic instability issues of iodine-containing perovskite solar cells December 26th, 2016

Nanoscale 'conversations' create complex, multi-layered structures: New technique leverages controlled interactions across surfaces to create self-assembled materials with unprecedented complexity December 22nd, 2016

Safe and inexpensive hydrogen production as a future energy source: Osaka University researchers develop efficient 'green' hydrogen production system that operates at room temperature in air December 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project