Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brookhaven Lab's New Light Source Halfway There Construction passes 50-percent milestone; magnet installation begins

NSLS-II construction site
NSLS-II construction site

Abstract:
The U.S. Department of Energy's Brookhaven National Laboratory is now halfway toward completing construction of the National Synchrotron Light Source II (NSLS-II), a powerful x-ray microscope nearly half a mile in circumference. Construction started in 2009 on the $912-million facility.

Brookhaven Lab's New Light Source Halfway There Construction passes 50-percent milestone; magnet installation begins

Upton, NY | Posted on March 22nd, 2011

Ready for research in 2015, NSLS-II will be one of the world's most advanced light sources, providing sophisticated new tools for science that will enhance national and energy security and help drive abundant, safe and clean energy technologies.

"The 50-percent mark is a major construction milestone," said Steve Dierker, Associate Laboratory Director for Photon Sciences and NSLS-II Project Director. "It means that half of the planned work on the project is finished." With this achievement coming in March 2011, the NSLS-II project is well ahead of schedule.

In 2009, the project received $150 million from the American Recovery and Reinvestment Act, money that came ahead of the baseline schedule and allowed construction to advance more quickly than originally planned.

During its construction and operation, NSLS-II is expected to create more than 1,250 construction jobs and 450 scientific, engineering and support jobs, plus additional jobs at U.S. material suppliers and service providers. Several dozen contractors, mostly based on Long Island, are currently working on the project.

Conventional construction in the project is divided into two major segments. Torcon serves as the prime contractor for the ring building, which will house the electron accelerator and beamlines that are the heart of NSLS-II. Laboratory-office buildings, which E.W. Howell is constructing, will be attached around the exterior of the ring building.

The circular ring building, encompassing 400,000 square feet, consists of seven sections. Construction is now substantially complete on the first ring section of 70,000 square feet, enabling Brookhaven Lab to take beneficial occupancy of the first fifth of the ring. Beneficial occupancy allows the NSLS-II project team to begin installing accelerator components and beamlines for experiments.

Taking beneficial occupancy of a portion of the ring building is a second major milestone, according to Dierker. Up until now, all activity in the ring building has involved conventional construction, including site preparation; concrete work; structural steel; mechanical, electrical and plumbing systems; and the building enclosure - roof and walls.

"Beneficial occupancy enables us to begin installing the first of 826 high-precision magnets destined for the main accelerator ring," said Dierker. The first, fully equipped magnet girder, 14 feet long and holding multiple magnets, will be placed in the ring building in March. This is a third significant milestone for the NSLS-II project.

In brief, NSLS-II will work by shooting electrons through the center of each magnet, where powerful magnetic fields will contain and steer the particles in a nearly circular path. Light emitted by electrons traveling around the ring will be shunted to beamlines, a collection of scientific instruments used to do experiments.

NSLS-II will enable scientists to focus on some of the nation's most important scientific challenges at the nanoscale level, including clean, affordable energy; molecular electronics; and high-temperature superconductors. NSLS-II will also be used to study the smallest crystals in structural biology.

Funded by the Department of Energy's Office of Science, the NSLS-II construction project is scheduled to be completed by June 2015.

-Written by Mona S. Rowe

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation of State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Media contacts:
Kendra Snyder

(631) 344-8191
or
Peter Genzer

(631) 344-3174??

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Laboratories

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Imaging

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES Expands to Meet Worldwide Customer Demand: Company invests for capacity growth in the United States, Germany, China and Singapore February 10th, 2017

Portable superconductivity systems for small motors: Cambridge University lab achieves a breakthrough for portable superconductivity systems that are applicable for small motors, health care and other uses February 8th, 2017

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nexeon Establishes Base in Asia October 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Tools

“Cysteine Rose” Wins 2016 Thermo Fisher Scientific Electron Microscopy Image Contest: Thermo Fisher honors Andrea Jacassi of the Italian Institute of Technology for image of cysteine crystals using focused ion beam techniques March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project