Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study Finds More Efficient Means Of Creating, Arranging Carbon Nanofibers

Images of carbon nanofibers grown from nickel nanoparticle catalysts: (left) without removing the ligands and (right) after removing the ligands from the nanoparticles before nanofiber growth. Note how the nanofibers grown from nanoparticles with ligands are more uniform in diameter and distribution.
Images of carbon nanofibers grown from nickel nanoparticle catalysts: (left) without removing the ligands and (right) after removing the ligands from the nanoparticles before nanofiber growth. Note how the nanofibers grown from nanoparticles with ligands are more uniform in diameter and distribution.

Abstract:
"Effects of Ligand Monolayers on Catalytic Nickel Nanoparticles for Synthesizing Vertically Aligned Carbon Nanofibers"

Authors: Mehmet F. Sarac, Robert M. Wilson, Aaron C. Johnston-Peck, Junwei Wang, Ryan Pearce, Anatoli V. Melechko, Joseph B. Tracy, North Carolina State University; Kate L. Klein, National Institute of Standards and Technology

Published: online March 17 in ACS Applied Materials & Interfaces

Abstract: Vertically aligned carbon nanofibers (VACNFs) were synthesized using ligand-stabilized Ni nanoparticle (NP) catalysts and plasma-enhanced chemical vapor deposition. Using chemically synthesized Ni NPs enables facile preparation of VACNF arrays with monodisperse diameters below the size limit of thin film lithography. During pregrowth heating, the ligands catalytically convert into graphitic shells that prevent the catalyst NPs from agglomerating and coalescing, resulting in a monodisperse VACNF size distribution. In comparison, significant agglomeration occurs when the ligands are removed before VACNF growth, giving a broad distribution of VACNF sizes. The ligand shells are also promising for patterning the NPs and synthesizing complex VACNF arrays.

Study Finds More Efficient Means Of Creating, Arranging Carbon Nanofibers

Raleigh, NC | Posted on March 17th, 2011

Carbon nanofibers hold promise for technologies ranging from medical imaging devices to precise scientific measurement tools, but the time and expense associated with uniformly creating nanofibers of the correct size has been an obstacle - until now. A new study from North Carolina State University demonstrates an improved method for creating carbon nanofibers of specific sizes, as well as explaining the science behind the method.

"Carbon nanofibers have a host of potential applications, but their utility is affected by their diameter - and controlling the diameter of nanofibers has historically been costly and time-consuming," says Dr. Anatoli Melechko, an associate professor of materials science and engineering at NC State and co-author of a paper describing the study.

Specifically, the researchers have shown that nickel nanoparticles coated with a ligand shell can be used to grow carbon nanofibers that are uniform in diameter. Ligands are small organic molecules that have functional groups (parts of the molecule) that bond directly to metals. Nickel nanoparticles are of particular interest because - at high temperatures - they can serve as catalysts for growing carbon nanofibers.

"What we learned is that the ligand shell, which is composed of trioctylphosphine, undergoes chemical changes at high temperatures - gradually transforming into a graphite-like shell," says Dr. Joe Tracy, a co-author of the paper and assistant professor of materials science and engineering at NC State. "These ‘graphitic' shells prevent the nickel nanoparticles from lumping together at elevated temperatures, which is a problem for high-temperature applications involving nanoparticles."

Using nanoparticles to grow nanofibers is useful, because the fibers tend to have the same diameter as the nanoparticles they are growing from. If you need nanofibers that are 20 nanometers (nm) in diameter, you would simply use nanoparticles that are 20 nm in diameter as your catalyst.

"This is why controlling the diameter of the nanoparticles is important. If they begin to lump together at high temperatures, you end up growing nanofibers of many different, larger sizes," Melechko says. "This research gives us a better fundamental understanding of the relationship between nickel nanoparticles, ligands and carbon nanofiber synthesis."

Using nanoparticles to grow nanofibers has another benefit - it allows you to define where the nanofibers grow and how they are arranged. If you need the nanofibers to grow in a specific pattern, you would arrange the nanoparticles in that pattern before growing the fibers.

The paper, "Effects of Ligand Monolayers on Catalytic Nickel Nanoparticles for Synthesizing Vertically Aligned Carbon Nanofibers," was published online March 17 in ACS Applied Materials & Interfaces. The paper was co-authored by Melechko, Tracy; NC State Ph.D. students Mehmet Sarac, Aaron Johnston-Peck and Ryan Pearce; NC State undergraduate Robert Wilson; former NC State post-doctoral research associate Dr. Junwei Wang; and Dr. Kate Klein of the National Institute of Standards and Technology. The research was funded by the National Science Foundation, U.S. Department of Energy, U.S. Department of Education, the Republic of Turkey and Protochips, Inc.

NC State's Department of Materials Science and Engineering is part of the university's College of Engineering.

####

About North Carolina State University
With more than 34,000 students and nearly 8,000 faculty and staff, North Carolina State University is a comprehensive university known for its leadership in education and research, and globally recognized for its science, technology, engineering and mathematics leadership.

NC State students, faculty and staff are focused. As one of the leading land-grant institutions in the nation, NC State is committed to playing an active and vital role in improving the quality of life for the citizens of North Carolina, the nation and the world.

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386


Dr. Joe Tracy
919.515.2623

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

QD Vision Expands Product Line with Two-Millimeter Color LCD Display Optic: Color IQ™ Optic Enables Full-Color Gamut for Ultra-Thin Displays and All-in-One Computers April 16th, 2015

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Nanotubes/Buckyballs

Nanotubes with two walls have singular qualities: Rice University lab calculates unique electronic qualities of double-walled carbon nanotubes April 16th, 2015

MIT sensor detects spoiled meat: Tiny device could be incorporated into 'smart packaging' to improve food safety April 15th, 2015

Taking aircraft manufacturing out of the oven: New technique uses carbon nanotube film to directly heat and cure composite materials April 14th, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Discoveries

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Major advance in artificial photosynthesis poses win/win for the environment: Berkeley Lab researchers perform solar-powered green chemistry with captured CO2 April 16th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

Materials/Metamaterials

The National Science Foundation names engineering researcher Andrea Alú its Alan T. Waterman awardee for 2015: Alú is a pioneer in the field of metamaterials who has developed "cloaking" technology to make objects invisible to sensors April 16th, 2015

Cobalt film a clean-fuel find: Rice University discovery is efficient, robust at drawing hydrogen and oxygen from water April 15th, 2015

Combined effort for structural determination April 15th, 2015

Harvesting energy from electromagnetic waves: In the future, clean alternatives such as harvesting energy from electromagnetic waves may help ease the world's energy shortage April 15th, 2015

Announcements

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Oxford Instruments commissions high field outsert magnet system for the National High Magnetic Field Laboratory 32 Tesla magnet program April 17th, 2015

Newly-Developed Nanocatalysts Increase Performance of Fuel Cells April 16th, 2015

Lanthanide-Organic Framework Nanothermometers Prepared by Spray-Drying April 16th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE