Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Stretched Rubber Offers Simpler Method For Assembling Nanowires

Abstract:
Researchers at North Carolina State University have developed a cheap and easy method for assembling nanowires, controlling their alignment and density. The researchers hope the findings will foster additional research into a range of device applications using nanowires, from nanoelectronics to nanosensors, especially on unconventional substrates such as rubber, plastic and paper.

Stretched Rubber Offers Simpler Method For Assembling Nanowires

Raleigh, NC | Posted on February 28th, 2011

"Alignment is a critical first step for developing devices that use nanowires," says Dr. Yong Zhu, an assistant professor of mechanical and aerospace engineering at NC State and co-author of a paper describing the research. "Hopefully our simple and cost-effective method will facilitate research in this field."

Aligning nanowires is challenging because, when they are created, the user is faced with a profusion of randomly oriented nanoscale wires that are, by definition, incredibly small. For example, the nanowires are between 10 and 100 nanometers in diameter, whereas a white blood cell is approximately 10,000 nanometers in diameter. Before any practical applications can be pursued, the user must assemble the nanowires in an orderly way. Specifically, users need to align the nanowires in a common direction and define their density - meaning the number of nanowires in a given area. Controlling both alignment and density is commonly called "assembling" the nanowires.

In the new method, Zhu's team deposited the nanowires on a stretched rubber substrate, and then released the tension on the substrate. When the nanowires settled, they aligned at a right angle to where the tension was coming from. Picture a rubber band being stretched to the east and west. If nanowires were placed on the rubber band, and the band was allowed to snap back to its original shape, the nanowires would be oriented to the north and south. The more the rubber substrate is stretched, the more aligned the nanowires will be, and the greater the nanowire density will be.

Previous research has presented a number of other methods for assembling nanowires. But the new method offers a number of distinct advantages. "Our method is cost-effective," says Feng Xu, a Ph.D. student working on this project, "because it is so simple. It can also be used for nanowires synthesized by different methods or processed in different conditions, for instance, silver nanowires synthesized in solution and silicon nanowires synthesized by the vapor-liquid-solid method, as demonstrated in our work." In addition, the new method can be used in conjunction with previous methods to achieve even better nanowire assembly.

The use of a rubber substrate in this method facilitates broad research and manufacturing sectors. For example, a key element of research into stretchable nanoelectronics involves aligning nanowires on a stretchable rubber substrate. Similarly, rubber is also the material used as "stamps" in transfer printing - a critical fabrication method used in manufacturing nanodevices on diverse substrates ranging from silicon to glass to plastic.

Zhu notes that the initial step of the method, when the nanowires are first deposited on stretched rubber, sometimes yields an inconsistent degree of nanowire alignment. The team is currently working to understand the fundamental interface mechanics -including adhesion and static friction -between nanowires and rubber substrates, which is expected to lead to a better control of the assembly process and hence a higher yield of the nanowire assembly.

The paper, "Strain-Release Assembly of Nanowires on Stretchable Substrates," was published Feb. 22 in ACS Nano. The paper was co-authored by Zhu, Xu, NC State Ph.D. student John Durham, and Dr. Benjamin Wiley, an assistant professor at Duke University. The research was funded by the National Science Foundation.

NC State's Department of Mechanical and Aerospace Engineering is part of the university's College of Engineering.

"Strain-Release Assembly of Nanowires on Stretchable Substrates"

Authors: Feng Xu, John W. Durham, III, Yong Zhu, North Carolina State University; Benjamin J. Wiley, Duke University

Published: Feb. 22, 2011, ACS Nano

Abstract: A simple yet effective method for assembly of highly aligned nanowires (NWs) on stretchable substrates is reported. In this method, NWs were first transferred to a strained stretchable substrate. After the strain was released, the NWs aligned in the transverse direction and the area coverage of the NWs on the substrate increased. This method can be applied to any NWs deposited on a stretchable film and can be repeated multiple times to increase the alignment and density of the NWs. For silver (Ag) and silicon (Si) NWs on poly(dimethylsiloxane) (PDMS) substrates, the probability of NW alignment increased from 29% to 90% for Ag NWs, and from 25% to 88% for Si NWs after two assembly steps; the density increased by 60% and 75% for the Ag and Si NWs, respectively. The large-strain elasticity of the substrate and the static friction between the NWs and the substrate play key roles in this assembly method. We find that a model that takes into account the volume incompressibility of PDMS reliably predicts the degree of NW alignment and NW density. The utility of this assembly method was demonstrated by fabricating a strain sensor array composed of aligned Si NWs on a PDMS substrate, with a device yield of 95%.

####

For more information, please click here

Contacts:
Matt Shipman | News Services | 919.515.6386

Dr. Yong Zhu | 919.513.7735

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

Nanometrics to Announce Fourth Quarter and Full Year Financial Results on February 7, 2017 January 19th, 2017

Govt.-Legislation/Regulation/Funding/Policy

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Self-assembling particles brighten future of LED lighting January 18th, 2017

Nanoscale view of energy storage January 16th, 2017

Possible Futures

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Sensors

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Discoveries

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Strength of hair inspires new materials for body armor January 18th, 2017

Announcements

Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

National Space Society Congratulates SpaceX on the Falcon 9's Return to Flight January 19th, 2017

Eric Berger Wins the National Space Society's 2017 Space Pioneer Award for Mass Media January 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project