Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Technique Boosts High-Power Potential For Gallium Nitride Electronics

By implanting a buffer made of argon, researchers have created GaN devices that can handle 10 times as much power.
By implanting a buffer made of argon, researchers have created GaN devices that can handle 10 times as much power.

Abstract:
Researchers at North Carolina State University have solved the problem, introducing a buffer that allows the GaN devices to handle 10 times greater power.

New Technique Boosts High-Power Potential For Gallium Nitride Electronics

Raleigh, NC | Posted on February 4th, 2011

Gallium nitride (GaN) material holds promise for emerging high-power devices that are more energy efficient than existing technologies - but these GaN devices traditionally break down when exposed to high voltages. Now researchers at North Carolina State University have solved the problem, introducing a buffer that allows the GaN devices to handle 10 times greater power.

"For future renewable technologies, such as the smart grid or electric cars, we need high-power semiconductor devices," says Merve Ozbek, a Ph.D. student at NC State and author of a paper describing the research. "And power-handling capacity is important for the development of those devices."

Previous research into developing high power GaN devices ran into obstacles, because large electric fields were created at specific points on the devices' edge when high voltages were applied - effectively destroying the devices. NC State researchers have addressed the problem by implanting a buffer made of the element argon at the edges of GaN devices. The buffer spreads out the electric field, allowing the device to handle much higher voltages.

The researchers tested the new technique on Schottky diodes - common electronic components - and found that the argon implant allowed the GaN diodes to handle almost seven times higher voltages. The diodes that did not have the argon implant broke down when exposed to approximately 250 volts. The diodes with the argon implant could handle up to 1,650 volts before breaking down.

"By improving the breakdown voltage from 250 volts to 1,650 volts, we can reduce the electrical resistance of these devices a hundredfold," says Dr. Jay Baliga, Distinguished University Professor of Electrical and Computer Engineering at NC State and co-author of the paper. "That reduction in resistance means that these devices can handle ten times as much power."

The paper, "Planar, Nearly Ideal Edge Termination Technique for GaN Devices," is forthcoming from IEEE's Electron Device Letters. The research was supported by NC State's Future Renewable Electric Energy Delivery and Management Systems Center, with funding from the National Science Foundation.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.

Abstract

"Planar, Nearly Ideal Edge Termination Technique for GaN Devices"

Authors: A. Merve Ozbek, B. Jayant Baliga, North Carolina State University

Published: Forthcoming, Electron Device Letters

Abstract: In this paper, a simple edge termination is described which can be used to achieve nearly ideal parallel plane breakdown voltage for GaN devices. This technique involves implanting a neutral species on the edges of devices to form a high resistive amorphous layer. With this termination, formed by using argon implantation, the breakdown voltage of GaN Schottky barrier diodes were increased from 300V for unterminated diodes to 1650V after termination.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Jay Baliga
919.515.6169

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Chip Technology

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Nanoelectronics

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

New class of 3D-printed aerogels improve energy storage April 22nd, 2015

‘Oxford Instruments Young Nanoscientist India Award 2015’ to Prof. Arindam Ghosh April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project