Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Technique Boosts High-Power Potential For Gallium Nitride Electronics

By implanting a buffer made of argon, researchers have created GaN devices that can handle 10 times as much power.
By implanting a buffer made of argon, researchers have created GaN devices that can handle 10 times as much power.

Abstract:
Researchers at North Carolina State University have solved the problem, introducing a buffer that allows the GaN devices to handle 10 times greater power.

New Technique Boosts High-Power Potential For Gallium Nitride Electronics

Raleigh, NC | Posted on February 4th, 2011

Gallium nitride (GaN) material holds promise for emerging high-power devices that are more energy efficient than existing technologies - but these GaN devices traditionally break down when exposed to high voltages. Now researchers at North Carolina State University have solved the problem, introducing a buffer that allows the GaN devices to handle 10 times greater power.

"For future renewable technologies, such as the smart grid or electric cars, we need high-power semiconductor devices," says Merve Ozbek, a Ph.D. student at NC State and author of a paper describing the research. "And power-handling capacity is important for the development of those devices."

Previous research into developing high power GaN devices ran into obstacles, because large electric fields were created at specific points on the devices' edge when high voltages were applied - effectively destroying the devices. NC State researchers have addressed the problem by implanting a buffer made of the element argon at the edges of GaN devices. The buffer spreads out the electric field, allowing the device to handle much higher voltages.

The researchers tested the new technique on Schottky diodes - common electronic components - and found that the argon implant allowed the GaN diodes to handle almost seven times higher voltages. The diodes that did not have the argon implant broke down when exposed to approximately 250 volts. The diodes with the argon implant could handle up to 1,650 volts before breaking down.

"By improving the breakdown voltage from 250 volts to 1,650 volts, we can reduce the electrical resistance of these devices a hundredfold," says Dr. Jay Baliga, Distinguished University Professor of Electrical and Computer Engineering at NC State and co-author of the paper. "That reduction in resistance means that these devices can handle ten times as much power."

The paper, "Planar, Nearly Ideal Edge Termination Technique for GaN Devices," is forthcoming from IEEE's Electron Device Letters. The research was supported by NC State's Future Renewable Electric Energy Delivery and Management Systems Center, with funding from the National Science Foundation.

NC State's Department of Electrical and Computer Engineering is part of the university's College of Engineering.

Abstract

"Planar, Nearly Ideal Edge Termination Technique for GaN Devices"

Authors: A. Merve Ozbek, B. Jayant Baliga, North Carolina State University

Published: Forthcoming, Electron Device Letters

Abstract: In this paper, a simple edge termination is described which can be used to achieve nearly ideal parallel plane breakdown voltage for GaN devices. This technique involves implanting a neutral species on the edges of devices to form a high resistive amorphous layer. With this termination, formed by using argon implantation, the breakdown voltage of GaN Schottky barrier diodes were increased from 300V for unterminated diodes to 1650V after termination.

####

For more information, please click here

Contacts:
Matt Shipman
News Services
919.515.6386

Dr. Jay Baliga
919.515.6169

Copyright © North Carolina State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Announcements

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE