Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > What a ride! Researchers take molecules for a spin

Rice graduate student Alexey Akimov, left, and Anatoly Kolomeisky, associate professor of chemistry, have taken a large step toward defining the behavior of molecules attached to a gold surface.  (Credit Jeff Fitlow/Rice University)
Rice graduate student Alexey Akimov, left, and Anatoly Kolomeisky, associate professor of chemistry, have taken a large step toward defining the behavior of molecules attached to a gold surface. (Credit Jeff Fitlow/Rice University)

Abstract:
Rice University scientists model tiny rotors, key to future nanomachines

What a ride! Researchers take molecules for a spin

Houston, TX | Posted on February 1st, 2011

"This is no cartoon. It's a real molecule, with all the interactions taking place correctly," said Anatoly Kolomeisky as he showed an animation of atoms twisting and turning about a central hub like a carnival ride gone mad.

Kolomeisky, a Rice University associate professor of chemistry, was offering a peek into a molecular midway where atoms dip, dive and soar according to a set of rules he is determined to decode.

Kolomeisky and Rice graduate student Alexey Akimov have taken a large step toward defining the behavior of these molecular whirligigs with a new paper in the American Chemical Society's Journal of Physical Chemistry C. Through molecular dynamics simulations, they defined the ground rules for the rotor motion of molecules attached to a gold surface.

It's an extension of their work on Rice's famed nanocars, developed primarily in the lab of James Tour, Rice's T.T. and W.F. Chao Chair in Chemistry as well as a professor of mechanical engineering and materials science and of computer science, but for which Kolomeisky has also constructed molecular models.

Striking out in a different direction, the team has decoded several key characteristics of these tiny rotors, which could harbor clues to the ways in which molecular motors in human bodies work.

The motion they described is found everywhere in nature, Kolomeisky said. The most visible example is in the flagella of bacteria, which use a simple rotor motion to move. "When the flagella turn clockwise, the bacteria move forward. When they turn counterclockwise, they tumble." On an even smaller level, ATP-synthase, which is an enzyme important to the transfer of energy in the cells of all living things, exhibits similar rotor behavior -- a Nobel Prize-winning discovery.

Understanding how to build and control molecular rotors, especially in multiples, could lead to some interesting new materials in the continuing development of machines able to work at the nanoscale, he said. Kolomeisky foresees, for instance, radio filters that would let only a very finely tuned signal pass, depending on the nanorotors' frequency.

"It would be an extremely important, though expensive, material to make," he said. "But if I can create hundreds of rotors that move simultaneously under my control, I will be very happy."

The professor and his student cut the number of parameters in their computer simulation to a subset of those that most interested them, Kolomeisky said. The basic-model molecule had a sulfur atom in the middle, tightly bound to a pair of alkyl chains, like wings, that were able to spin freely when heated. The sulfur anchored the molecule to the gold surface.

While working on a previous paper with researchers at Tufts University, Kolomeisky and Akimov saw photographic evidence of rotor motion by scanning tunneling microscope images of sulfur/alkyl molecules heated on a gold surface. As the heat rose, the image went from linear to rectangular to hexagonal, indicating motion. What the pictures didn't indicate was why.

That's where computer modeling was invaluable, both on the Kolomeisky lab's own systems and through Rice's platform, a shared supercomputer cluster. By testing various theoretical configurations -- some with two symmetrical chains, some asymmetrical, some with only one chain -- they were able to determine a set of interlocking characteristics that control the behavior of single-molecule rotors.

First, he said, the symmetry and structure of the gold surface material (of which several types were tested) has a lot of influence on a rotor's ability to overcome the energy barrier that keeps it from spinning all the time. When both arms are close to surface molecules (which repel), the barrier is large. But if one arm is over a space -- or hollow -- between gold atoms, the barrier is significantly smaller.

Second, symmetric rotors spin faster than asymmetric ones. The longer chain in an asymmetric pair takes more energy to get moving, and this causes an imbalance. In symmetric rotors, the chains, like rigid wings, compensate for each other as one wing dips into a hollow while the other rises over a surface molecule.

Third, Kolomeisky said, the nature of the chemical bond between the anchor and the chains determines the rotor's freedom to spin.

Finally, the chemical nature of rotating groups is also an important factor.

Kolomeisky said the research opens a path for simulating more complex rotor molecules. The chains in ATP-synthase are far too large for a simulation to wrangle, "but as computers get more powerful and our methods improve, we may someday be able to analyze such long molecules," he said.

The Welch Foundation, the National Science Foundation and the National Institutes of Health funded the research.

Read the abstract at tinyurl.com/6xxwtol

An animation of a rotor simulation is available here: www.youtube.com/watch?v=GJJxSs6AkeM

####

About Rice University
Located in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. A Tier One research university known for its "unconventional wisdom," Rice has schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and offers its 3,485 undergraduates and 2,275 graduate students a wide range of majors. Rice has the sixth-largest endowment per student among American private research universities and is rated No. 4 for “best value” among private universities by Kiplinger’s Personal Finance. Its undergraduate student-to-faculty ratio is less than 6-to-1. With a residential college system that builds close-knit and diverse communities and collaborative culture, Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review.

For more information, please click here

Contacts:
David Ruth
713-348-6327


Mike Williams
713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

IEEE Photonics Society Applauds Rochester on Integrated Photonics Institute Win July 30th, 2015

Take a trip through the brain July 30th, 2015

Possible Futures

Nanofiltration Membrane Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanozirconia Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Self-Healing Nano Anti-rust Coatings Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Molecular Machines

Injectable electronics: New system holds promise for basic neuroscience, treatment of neuro-degenerative diseases June 8th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Announcements

Nano Spray Instrument Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Nanocellulose Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project