Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New Transistor for Plastic Electronics Exhibits the Best of Both Worlds

Top-Gate Organic Field-Effect Transistor with Bilayer Gate Insulator. Bernard Kippelen and his research team at the Center for Organic Photonics and Electronics have demonstrated a new transistor for use on flexible plastic electronics, known as a top-gate organic field-effect transistor with a bilayer gate insulator. The transistor's properties give it incredible stability while exhibiting good performance. Photo credit: Canek Fuentes-Herandez/Georgia Tech
Top-Gate Organic Field-Effect Transistor with Bilayer Gate Insulator. Bernard Kippelen and his research team at the Center for Organic Photonics and Electronics have demonstrated a new transistor for use on flexible plastic electronics, known as a top-gate organic field-effect transistor with a bilayer gate insulator. The transistor's properties give it incredible stability while exhibiting good performance. Photo credit: Canek Fuentes-Herandez/Georgia Tech

Abstract:
In the quest to develop flexible plastic electronics, one of the stumbling blocks has been creating transistors with enough stability for them to function in a variety of environments while still maintaining the current needed to power the devices.

New Transistor for Plastic Electronics Exhibits the Best of Both Worlds

Atlanta, GA | Posted on January 28th, 2011

Online in the journal Advanced Materials, researchers from the Georgia Institute of Technology describe a new method of combining top-gate organic field-effect transistors with a bilayer gate insulator. This allows the transistor to perform with incredible stability while exhibiting good current performance. In addition, the transistor can be mass produced in a regular atmosphere and can be created using lower temperatures, making it compatible with the plastic devices it will power.

The research team used an existing semiconductor and changed the gate dielectric because transistor performance depends not only on the semiconductor itself, but also on the interface between the semiconductor and the gate dielectric.

"Rather than using a single dielectric material, as many have done in the past, we developed a bilayer gate dielectric," said Bernard Kippelen, director of the Center for Organic Photonics and Electronics and professor in Georgia Tech's School of Electrical and Computer Engineering.

The bilayer dielectric is made of a fluorinated polymer known as CYTOP and a high-k metal-oxide layer created by atomic layer deposition. Used alone, each substance has its benefits and its drawbacks.

CYTOP is known to form few defects at the interface of the organic semiconductor, but it also has a very low dielectric constant, which requires an increase in drive voltage. The high-k metal-oxide uses low voltage, but doesn't have good stability because of a high number of defects on the interface.

So, Kippelen and his team wondered what would happen if they combined the two substances in a bilayer. Would the drawbacks cancel each other out?

"When we started to do the test experiments, the results were stunning. We were expecting good stability, but not to the point of having no degradation in mobility for more than a year," said Kippelen.

The team performed a battery of tests to see just how stable the bilayer was. They cycled the transistors 20,000 times. There was no degradation. They tested it under a continuous bias stress where they ran the highest possible current through it. There was no degradation. They even stuck it in a plasma chamber for five minutes. There was still no degradation.

The only time they saw any degradation was when they dropped it into acetone for an hour. There was some degradation, but the transistor was still operational.

No one was more surprised than Kippelen.

"I had always questioned the concept of having air-stable field-effect transistors, because I thought you would always have to combine the transistors with some barrier coating to protect them from oxygen and moisture. We've proven ourselves wrong through this work," said Kippelen.

"By having the bilayer gate insulator we have two different degradation mechanisms that happen at the same time, but the effects are such that they compensate for one another," explains Kippelen. "So if you use one it leads to a decrease of the current, if you use the other it leads to a shift of the thereshold voltage and over time to an increase of the current. But if you combine them, their effects cancel out."

"This is an elegant way of solving the problem. So, rather than trying to remove each effect, we took two processes that complement one another and as a result you have a transistor that's rock stable."

The transistor conducts current and runs at a voltage comparable to amorphous silicon, the current industry standard used on glass substrates, but can be manufactured at temperatures below 150°C, in line with the capabilities of plastic substrates. It can also be created in a regular atmosphere, making it easier to fabricate than other transistors.

Applications for these transistors include smart bandages, RFID tags, plastic solar cells, light emitters for smart cards - virtually any application where stable power and a flexible surface are needed.

In this paper the tests were performed on glass substrates. Next, the team plans on demonstrating the transistors on flexible plastic substrates. Then they will test the ability to manufacture the bilayer transistors with ink jet printing technologies.

Kippelen's research team was comprised of Do Kyung Hwang, Canek Fuentes-Hernandez, Jungbae Kim, William J. Postcavage Jr. and Sung-Jin Kim.

The research was supported by Solvay, the Office of Naval Research and the National Science Foundation.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the world's premier research universities. Ranked seventh among U.S. News & World Report's top public universities and the eighth best engineering and information technology university in the world by Shanghai Jiao Tong University's Academic Ranking of World Universities, Georgia Tech’s more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
David Terraso
Communications and Marketing
404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

SUNY Poly CNSE, Known One Day a Year as SUNY PI CNSE, and Tech Valley High School Celebrate Pi Day: More than one hundred students enjoy pizza ‘pi’ as they take part in fun, pi-themed activities meant to share the excitement of mathematics and science in anticipation of March 14 March 14th, 2015

Ghent University leads large-scale European training project on quantum dots March 13th, 2015

Chip Technology

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

EEE Photonics Society’s Fourth Annual Optical Interconnects Conference Seeks to Bring Together the Latest Advanced Optical Interconnect Technologies, Systems & Architectures for the Next Generation of Supercomputers & Datacenters March 23rd, 2015

Nanomedicine

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanorobotic agents open the blood-brain barrier, offering hope for new brain treatments March 25th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanobiotechnology

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Super-resolution microscopes reveal the link between genome packaging and cell pluripotency: A study using super-resolution microscopy reveals that our genome is not regularly packaged and links these packaging differences to stem cell state March 12th, 2015

Solar/Photovoltaic

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

Caltech scientists develop cool process to make better graphene March 18th, 2015

Clean energy future: New cheap and efficient electrode for splitting water March 18th, 2015

A new method for making perovskite solar cells March 16th, 2015

RFID

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

IDTechEx launches online Market Intelligence Portal May 23rd, 2013

Mincom Capital Inc. and Group Nanoxplore Inc. Sign Letter of Intent for a Qualifying Transaction April 10th, 2013

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE