Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > New Transistor for Plastic Electronics Exhibits the Best of Both Worlds

Top-Gate Organic Field-Effect Transistor with Bilayer Gate Insulator. Bernard Kippelen and his research team at the Center for Organic Photonics and Electronics have demonstrated a new transistor for use on flexible plastic electronics, known as a top-gate organic field-effect transistor with a bilayer gate insulator. The transistor's properties give it incredible stability while exhibiting good performance. Photo credit: Canek Fuentes-Herandez/Georgia Tech
Top-Gate Organic Field-Effect Transistor with Bilayer Gate Insulator. Bernard Kippelen and his research team at the Center for Organic Photonics and Electronics have demonstrated a new transistor for use on flexible plastic electronics, known as a top-gate organic field-effect transistor with a bilayer gate insulator. The transistor's properties give it incredible stability while exhibiting good performance. Photo credit: Canek Fuentes-Herandez/Georgia Tech

Abstract:
In the quest to develop flexible plastic electronics, one of the stumbling blocks has been creating transistors with enough stability for them to function in a variety of environments while still maintaining the current needed to power the devices.

New Transistor for Plastic Electronics Exhibits the Best of Both Worlds

Atlanta, GA | Posted on January 28th, 2011

Online in the journal Advanced Materials, researchers from the Georgia Institute of Technology describe a new method of combining top-gate organic field-effect transistors with a bilayer gate insulator. This allows the transistor to perform with incredible stability while exhibiting good current performance. In addition, the transistor can be mass produced in a regular atmosphere and can be created using lower temperatures, making it compatible with the plastic devices it will power.

The research team used an existing semiconductor and changed the gate dielectric because transistor performance depends not only on the semiconductor itself, but also on the interface between the semiconductor and the gate dielectric.

"Rather than using a single dielectric material, as many have done in the past, we developed a bilayer gate dielectric," said Bernard Kippelen, director of the Center for Organic Photonics and Electronics and professor in Georgia Tech's School of Electrical and Computer Engineering.

The bilayer dielectric is made of a fluorinated polymer known as CYTOP and a high-k metal-oxide layer created by atomic layer deposition. Used alone, each substance has its benefits and its drawbacks.

CYTOP is known to form few defects at the interface of the organic semiconductor, but it also has a very low dielectric constant, which requires an increase in drive voltage. The high-k metal-oxide uses low voltage, but doesn't have good stability because of a high number of defects on the interface.

So, Kippelen and his team wondered what would happen if they combined the two substances in a bilayer. Would the drawbacks cancel each other out?

"When we started to do the test experiments, the results were stunning. We were expecting good stability, but not to the point of having no degradation in mobility for more than a year," said Kippelen.

The team performed a battery of tests to see just how stable the bilayer was. They cycled the transistors 20,000 times. There was no degradation. They tested it under a continuous bias stress where they ran the highest possible current through it. There was no degradation. They even stuck it in a plasma chamber for five minutes. There was still no degradation.

The only time they saw any degradation was when they dropped it into acetone for an hour. There was some degradation, but the transistor was still operational.

No one was more surprised than Kippelen.

"I had always questioned the concept of having air-stable field-effect transistors, because I thought you would always have to combine the transistors with some barrier coating to protect them from oxygen and moisture. We've proven ourselves wrong through this work," said Kippelen.

"By having the bilayer gate insulator we have two different degradation mechanisms that happen at the same time, but the effects are such that they compensate for one another," explains Kippelen. "So if you use one it leads to a decrease of the current, if you use the other it leads to a shift of the thereshold voltage and over time to an increase of the current. But if you combine them, their effects cancel out."

"This is an elegant way of solving the problem. So, rather than trying to remove each effect, we took two processes that complement one another and as a result you have a transistor that's rock stable."

The transistor conducts current and runs at a voltage comparable to amorphous silicon, the current industry standard used on glass substrates, but can be manufactured at temperatures below 150°C, in line with the capabilities of plastic substrates. It can also be created in a regular atmosphere, making it easier to fabricate than other transistors.

Applications for these transistors include smart bandages, RFID tags, plastic solar cells, light emitters for smart cards - virtually any application where stable power and a flexible surface are needed.

In this paper the tests were performed on glass substrates. Next, the team plans on demonstrating the transistors on flexible plastic substrates. Then they will test the ability to manufacture the bilayer transistors with ink jet printing technologies.

Kippelen's research team was comprised of Do Kyung Hwang, Canek Fuentes-Hernandez, Jungbae Kim, William J. Postcavage Jr. and Sung-Jin Kim.

The research was supported by Solvay, the Office of Naval Research and the National Science Foundation.

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the world's premier research universities. Ranked seventh among U.S. News & World Report's top public universities and the eighth best engineering and information technology university in the world by Shanghai Jiao Tong University's Academic Ranking of World Universities, Georgia Tech’s more than 20,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and minority engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
David Terraso
Communications and Marketing
404-385-2966

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Govt.-Legislation/Regulation/Funding/Policy

Novel Rocket Design Flight Tested: New Rocket Propellant and Motor Design Offers High Performance and Safety October 23rd, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Brookhaven Lab Launches Computational Science Initiative:Leveraging computational science expertise and investments across the Laboratory to tackle "big data" challenges October 22nd, 2014

Bipolar Disorder Discovery at the Nano Level: Tiny structures found in brain synapses help scientists better understand disorder October 22nd, 2014

Possible Futures

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Nanocoatings Market By Product Is Expected To Reach USD 8.17 Billion By 2020: Grand View Research, Inc. October 15th, 2014

Perpetuus Carbon Group Receives Independent Verification of its Production Capacity for Graphenes at 140 Tonnes per Annum: Perpetuus Becomes the First Manufacturer in the Sector to Allow Third Party Audit October 7th, 2014

Academic/Education

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nanomedicine

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Iranian Scientists Apply Nanotechnology to Produce Surgery Suture October 23rd, 2014

RF Heating of Magnetic Nanoparticles Improves the Thawing of Cryopreserved Biomaterials October 23rd, 2014

Sopping up proteins with thermosponges: Researchers develop novel nanoparticle platform that proves effective in delivering protein-based drugs October 22nd, 2014

Nanoelectronics

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

Nanobiotechnology

NYU Researchers Break Nano Barrier to Engineer the First Protein Microfiber October 23rd, 2014

Nanoparticle technology triples the production of biogas October 23rd, 2014

Mechanism behind nature's sparkles revealed October 22nd, 2014

‘Designer’ nanodevice could improve treatment options for cancer sufferers October 22nd, 2014

Solar/Photovoltaic

Advancing thin film research with nanostructured AZO: Innovnano’s unique and cost-effective AZO sputtering targets for the production of transparent conducting oxides October 23rd, 2014

Magnetic mirrors enable new technologies by reflecting light in uncanny ways October 16th, 2014

Dyesol Signs Letter of Intent with Tata Steel October 13th, 2014

DNA nano-foundries cast custom-shaped metal nanoparticles: DNA's programmable assembly is leveraged to form precise 3D nanomaterials for disease detection, environmental testing, electronics and beyond October 10th, 2014

RFID

LogiTag’s Active RTLS Solution Selected by Hebrew University Nano Labs to Safeguards and Monitor Students and Staff May 13th, 2014

Leti and Partners in SOCRATE Project Focusing on Miniature Antennas with Super-Directivity Radiation Properties: Improving Directivity of Small Antennas Would Enhance Spectral Efficiency, Reduce Environmental Impact and Increase Functionality July 15th, 2013

IDTechEx launches online Market Intelligence Portal May 23rd, 2013

Mincom Capital Inc. and Group Nanoxplore Inc. Sign Letter of Intent for a Qualifying Transaction April 10th, 2013

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE