Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Good News For Computer Users: Future Processor And Memory Functions To Be Significantly More Efficient; Offer Higher Energy Savings

Abstract:
Proceedings of the IEEE Cites Potential for Spin-Based Technology to Replace Static RAM

Good News For Computer Users: Future Processor And Memory Functions To Be Significantly More Efficient; Offer Higher Energy Savings

Piscataway, NJ | Posted on January 3rd, 2011

According to research reported in the special issue update of Proceedings of the IEEE (www.ieee.org/proceedings) on Nanoelectronics applications, computer users will be elated to learn that efficient new systems to process information and sustain memory function are on the horizon. Many of these are new devices and forward-thinking technologies proposed to perform either the processor function or the memory function, and in some instances a universal device to perform both functions. Proceedings of the IEEE is the world's most highly-cited general-interest journal in electrical engineering and computer science since 1913.

This Nanoelectronics update issue, published by the IEEE, the world's largest technical professional association, presents 16 research papers reflecting a two-phased approach to bringing about change in both processing information and sustaining memory function. Phase one papers address extending chip functionality beyond what is thought possible today, while phase two explores ways to create a new, multifunctional and scalable platform technology such as an all spin-based logic for both processor and memory tasks.

An exciting albeit still controversial aspect of the idea of employing spin-based technology to replace RAM is described in "Spin-transistor Electronics: An Overview and Outlook" by S. Sugahara and J. Nitta, which makes a strong case for using spin instead of charge as a building block for novel integrated circuits that never need refreshing.

"Spin devices could also be used to realize non-volatile memory and reconfigurable output characteristics that are very useful and offer suitable functionalities for new integrated circuit architectures that are inaccessible to ordinary transistor circuits," explains James Hutchby, guest editor for the Nanotechnology Special Issue, as he recently commented on the current status and outlook for spin transistors.

In "In Quest of the Next Switch" by T. Theis and P. Solomon, an exploration is presented of options for reducing energy dissipation characteristic of semiconductors. The article also provides important insight into the search to replace the silicon Metal Oxide Semiconductor Field Effect Transistor (MOSFET) and Complementary (CMOS) gate as the basic unit logic device. The potential for Graphene to play an important role in processor and memory functions for new "beyond CMOS devices" is also addressed in this issue.

In "Graphene for CMOS and Beyond CMOS Applications" by S.K. Banerjee et al., several unique properties of graphene are summarized including its very high mobility and linear band structure while also demonstrating that the unique properties of graphene can lead to discovery and development of important and new "Beyond CMOS" devices.

"While it could be many years before we see any of these graphene applications fully realized, the discovery of graphene and now the potential we see for it and have illustrated in this article offers an unparalleled opportunity for scientists to investigate these possibilities," says Hutchby.

"The overriding opportunity these research papers offer to the Nanoelectronics research community is a chance to develop a new concept and its enabling technology capable of sustaining information processing (including memory) functional scaling beyond that which is attainable with scaled Complimentary Metal Oxide Semi-conductor (CMOS)," further explains Hutchby. "And this new concept could be based on use of a new ‘token‘(e.g. electronic spin) to replace charge as the means to represent a bit of information."

To receive a copy of this Proceedings of the IEEE Nanoelectronics Network Applications issue, to read a specific paper or to coordinate an interview with a guest editor please contact Lauren Russ at or visit the website at ieeexplore.ieee.org or the journal's web site at www.ieee.org/proceedings.

####

About IEEE
IEEE, the world’s largest technical professional association, is dedicated to advancing technology for the benefit of humanity. Through its highly cited publications, conferences, technology standards, and professional and educational activities, IEEE is the trusted voice on a wide variety of areas ranging from aerospace systems, computers and telecommunications to biomedical engineering, electric power and consumer electronics.

Learn more at www.ieee.org.

About Proceedings of the IEEE

Founded in 1913, (originally as Proceedings of the IRE), Proceedings of the IEEE is the most highly-cited general –interest journal in electrical engineering and computer science. This journal provides the most in-depth tutorial and review coverage of the technical developments that shape our world, using guest authors and editors from the best research facilities, leading edge corporations and enlightened universities around the world. For more information on Proceedings of the IEEE and the latest ideas and innovative technologies, visit www.ieee.org/proceedings.

For more information, please click here

Contacts:
Lauren Russ

Copyright © IEEE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Spintronics

Nanoscale Mirrored Cavities Amplify, Connect Quantum Memories: Advance could lead to quantum computing and the secure transfer of information over long-distance fiber optic networks January 28th, 2015

Piezoelectricity in a 2-D semiconductor: Berkeley Lab researchers discovery of piezoelectricty in molybdenum disulfide holds promise for future MEMS December 22nd, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

New pathway to valleytronics January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

Performance Drop in Solar Cells Prevented by Nanotechnology February 1st, 2015

Pinholes are Pitfalls for High Performance Solar Cells February 1st, 2015

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE