Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small particles show big promise in beating unpleasant odors

Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Å pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Å nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.
Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Å pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Å nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.

Abstract:
Copper Coated Silica Nanoparticles for Odor Removal

Small particles show big promise in beating unpleasant odors

Washington, DC | Posted on December 25th, 2010

Scientists are reporting development of a new approach for dealing with offensive household and other odors — one that doesn't simply mask odors like today's room fresheners, but eliminates them at the source. Their research found that a deodorant made from nanoparticles — hundreds of times smaller than peach fuzz — eliminates odors up to twice as effectively as today's gold standard. A report on these next-generation odor-fighters appears in ACS' Langmuir, a bi-weekly journal.

Brij Moudgil and colleagues note that consumers use a wide range of materials to battle undesirable odors in clothing, on pets, in rooms, and elsewhere. Most common household air fresheners, for instance, mask odors with pleasing fragrances but do not eliminate the odors from the environment. People also apply deodorizing substances that absorb smells. These materials include activated carbon and baking soda. However, these substances tend to have only a weak ability to absorb the chemicals responsible for the odor.

The scientists describe development of a new material consisting of nanoparticles of silica (the main ingredient in beach sand) — each 1/50,000th the width of a human hair — coated with copper. That metal has well-established antibacterial and anti-odor properties, and the nanoparticles gave copper a greater surface area to exert its effects. Tests of the particles against ethyl mercaptan, the stuff that gives natural gas its unpleasant odor, showed that nanoparticles were up to twice as effective as the gold standard — activated carbon — at removing the material's foul-smelling odor. In addition to fighting odors, the particles also show promise for removing sulfur contaminants found in crude oil and for fighting harmful bacteria, they add.

Visit this link for a video:

www.dailymotion.com/video/xfk5tt_florida-nano-tech-team-declares-war-on-bad-odors_tech

####

For more information, please click here

Contacts:
Science Inquiries:
Michael Woods
Editor
202-872-6293

General Inquiries:
Michael Bernstein
202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Environment

Nanofur for oil spill cleanup: Materials researchers learn from aquatic ferns: Hairy plant leaves are highly oil-absorbing / publication in bioinspiration & biomimetics / video on absorption capacity August 25th, 2016

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

Sports

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Textiles/Clothing

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic