Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Small particles show big promise in beating unpleasant odors

Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Å pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Å nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.
Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Å pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Å nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.

Abstract:
Copper Coated Silica Nanoparticles for Odor Removal

Small particles show big promise in beating unpleasant odors

Washington, DC | Posted on December 25th, 2010

Scientists are reporting development of a new approach for dealing with offensive household and other odors — one that doesn't simply mask odors like today's room fresheners, but eliminates them at the source. Their research found that a deodorant made from nanoparticles — hundreds of times smaller than peach fuzz — eliminates odors up to twice as effectively as today's gold standard. A report on these next-generation odor-fighters appears in ACS' Langmuir, a bi-weekly journal.

Brij Moudgil and colleagues note that consumers use a wide range of materials to battle undesirable odors in clothing, on pets, in rooms, and elsewhere. Most common household air fresheners, for instance, mask odors with pleasing fragrances but do not eliminate the odors from the environment. People also apply deodorizing substances that absorb smells. These materials include activated carbon and baking soda. However, these substances tend to have only a weak ability to absorb the chemicals responsible for the odor.

The scientists describe development of a new material consisting of nanoparticles of silica (the main ingredient in beach sand) — each 1/50,000th the width of a human hair — coated with copper. That metal has well-established antibacterial and anti-odor properties, and the nanoparticles gave copper a greater surface area to exert its effects. Tests of the particles against ethyl mercaptan, the stuff that gives natural gas its unpleasant odor, showed that nanoparticles were up to twice as effective as the gold standard — activated carbon — at removing the material's foul-smelling odor. In addition to fighting odors, the particles also show promise for removing sulfur contaminants found in crude oil and for fighting harmful bacteria, they add.

Visit this link for a video:

www.dailymotion.com/video/xfk5tt_florida-nano-tech-team-declares-war-on-bad-odors_tech

####

For more information, please click here

Contacts:
Science Inquiries:
Michael Woods
Editor
202-872-6293

General Inquiries:
Michael Bernstein
202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Sports

Abalonyx launches Reduced Graphene Oxide Product: Abalonyx has successfully scaled up production of thermally reduced graphene oxide (rGO) in its Tofte, Norway, production facility. This product is now offered to customers in Kg-quantities May 10th, 2016

What makes penguin feathers ice-proof February 24th, 2016

Imec and Cloudtag Collaborate on High Quality Frictionless Wearables for Lifestyle Coaching: Next-generation health and fitness tracker Cloudtag TrackTM launched at CES 2016 January 7th, 2016

New stretchable, wearable sensor made with chewing gum (video) December 2nd, 2015

Textiles/Clothing

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project