Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International

Wikipedia Affiliate Button

Home > Press > Small particles show big promise in beating unpleasant odors

Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Ĺ pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Ĺ nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.
Copper species coated silica nanoparticles (CuOXS) were synthesized for odor removal application. Coating with copper increased the capacity of silica nanoparticles for eliminating a model odor—ethyl mercaptan. Surface area, pore size distribution, and electron paramagnetic resonance spectroscopy analyses indicated that, at lower copper concentrations, copper species preferentially adsorb in 20 Ĺ pores of silica. These copper species in a dispersed state are effective in catalytic removal of ethyl mercaptan. The best performance of copper-coated silica nanoparticles was achieved at a copper concentration of 3 wt %, at which all 20 Ĺ nanopores were filled with isolated copper species. At higher copper loading, copper species are present as clusters on silica surfaces, which were found to be less effective in removing ethyl mercaptan. Gas chromatography experiments were carried out to verify catalytic conversion of ethyl mercaptan to diethyl disulfide by CuOXS particles. The present study suggests that the nature of the copper species and their site of adsorption, as well as state of dispersion, are important parameters to be considered for catalytic removal of sulfur-containing compounds. These parameters are critical for designing high-performance catalytic copper-coated silica nanoparticles for applications such as deodorization, removal of sulfur compounds from crude oil, hydrogenation, and antimicrobial activity. Credit Langmuir.

Abstract:
Copper Coated Silica Nanoparticles for Odor Removal

Small particles show big promise in beating unpleasant odors

Washington, DC | Posted on December 25th, 2010

Scientists are reporting development of a new approach for dealing with offensive household and other odors — one that doesn't simply mask odors like today's room fresheners, but eliminates them at the source. Their research found that a deodorant made from nanoparticles — hundreds of times smaller than peach fuzz — eliminates odors up to twice as effectively as today's gold standard. A report on these next-generation odor-fighters appears in ACS' Langmuir, a bi-weekly journal.

Brij Moudgil and colleagues note that consumers use a wide range of materials to battle undesirable odors in clothing, on pets, in rooms, and elsewhere. Most common household air fresheners, for instance, mask odors with pleasing fragrances but do not eliminate the odors from the environment. People also apply deodorizing substances that absorb smells. These materials include activated carbon and baking soda. However, these substances tend to have only a weak ability to absorb the chemicals responsible for the odor.

The scientists describe development of a new material consisting of nanoparticles of silica (the main ingredient in beach sand) — each 1/50,000th the width of a human hair — coated with copper. That metal has well-established antibacterial and anti-odor properties, and the nanoparticles gave copper a greater surface area to exert its effects. Tests of the particles against ethyl mercaptan, the stuff that gives natural gas its unpleasant odor, showed that nanoparticles were up to twice as effective as the gold standard — activated carbon — at removing the material's foul-smelling odor. In addition to fighting odors, the particles also show promise for removing sulfur contaminants found in crude oil and for fighting harmful bacteria, they add.

Visit this link for a video:

www.dailymotion.com/video/xfk5tt_florida-nano-tech-team-declares-war-on-bad-odors_tech

####

For more information, please click here

Contacts:
Science Inquiries:
Michael Woods
Editor
202-872-6293

General Inquiries:
Michael Bernstein
202-872-6042

Copyright © American Chemical Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Possible Futures

Magnetoresistive sensors for near future innovative development March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Academic/Education

Pushing Past Limits: Junkai Jiang receives prestigious Ph.D. Student Fellowship from IEEE Electron Devices Society March 14th, 2019

Research Pioneers: Five UCSB professors are named Fellows of the American Association for the Advancement of Science November 27th, 2018

GaN Rising: UC Santa Barbara electrical and computer engineering professor Umesh Mishra to deliver 63rd Annual Faculty Research Lecture November 16th, 2018

The National Graphene Association Is Excited To Announce A New Affiliate Partnership With Graphene Engineering Innovation Centre (GEIC) November 7th, 2018

Announcements

Dynamic hydrogel used to make 'soft robot' components and LEGO-like building blocks March 22nd, 2019

Discovery may lead to precision-based strategy for triple negative breast cancer: Indiana University researcher develops promising nanotechnology approach for treatment of aggressive form of disease March 22nd, 2019

Organic semiconductors: One transistor for all purposes March 22nd, 2019

Making solar cells is like buttering bread March 22nd, 2019

Environment

Defects help nanomaterial soak up more pollutant in less time: Rice U. researchers find new way to remove PFOS from industrial wastewater March 13th, 2019

Oxford Instruments and partners launch EU Horizon 2020 project ULISSES: Air sensors for everyone, everywhere March 7th, 2019

Rice U. lab adds porous envelope to aluminum plasmonics: Scientists marry gas-trapping framework to light-powered nanocatalysts February 10th, 2019

Platinum forms nano-bubbles: Technologically important noble metal oxidises more readily than expected January 28th, 2019

Sports

Collagen nanofibrils in mammalian tissues get stronger with exercise December 14th, 2018

Epoxy compound gets a graphene bump: Rice scientists combine graphene foam, epoxy into tough, conductive composite November 14th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Graphene-based desiccant offers super dry solution to moisture control June 1st, 2018

Textiles/Clothing

The materials engineers are developing environmentally friendly materials: The materials engineers are developing environmentally friendly materials for producing smart textiles November 2nd, 2018

A bullet-proof heating pad November 2nd, 2018

Eco-friendly waterproof polymer films synthesized using novel method October 31st, 2018

Unraveling the mystery of how black widow spiders create steel-strength silk webs: ‘Modified micelle theory’ may allow scientists to create equally strong synthetic materials October 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project