Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Samsung funding is awarded for development of novel nano-magnetic device architectures

Electron micrograph of nanofabricated magnetic nanostructures, where the magnetic properties are controlled via the structure's geometry and size.
Electron micrograph of nanofabricated magnetic nanostructures, where the magnetic properties are controlled via the structure's geometry and size.

Abstract:
Dr Colm Durkan, currently the head of Cambridge University's Nanoscience Research Group, has been awarded funding from the Samsung Global Research Outreach (GRO) programme, for research and development of novel magnetic devices for information processing. This was a highly competitive funding round with only 23 grants awarded worldwide.

Samsung funding is awarded for development of novel nano-magnetic device architectures

UK | Posted on December 13th, 2010

The world of electronics has reached a junction whereby new paradigms are continually emerging. Transistors fabricated using conventional processes are already small enough (~ 20 nm) that they are on the verge of demonstrating quantum effects involving tunneling, localization and electron interference. One of the most promising avenues however, is spintronics, where the spin degree of freedom of the electron to do something novel is utilized.

Colm and his team are interested in the fundamentals underpinning some of this technology. Colm says; 'There is a large scientific community investigating novel materials for data storage, whereas our interest is in the size effect of soft magnetic materials in general. Our expertise is specifically in the fabrication and functional characterization of nanostructures by scanning probe microscopy, combined with state-of-the art modelling.'

Colm has already pioneered several scanning probe microscopy developments in the field, work that led to election to a fellowship of the Institute of Physics earlier this year and promotion to a personal readership in October 2010.

'For magnetic structures with dimensions below around 1µm, the magnetic properties are determined to a large extent by the geometry and size of the structures. On the more extreme scale of ultra-thin films of magnetic materials, it has recently been shown that one may dramatically alter magnetic properties simply by controlling film thickness and substrate surface. Therefore, we wish to tap into this treasure chest of nanomagnetism to realize novel data storage, information processing and spin readout systems to increase the functionality of electronic components without significant cost implications.'

Some of Colm's recent work on this topic has recently been published in Physical Review B.

Webpage: www.eng.cam.ac.uk/~cd229/

####

For more information, please click here

Contacts:
Dr Colm Durkan

www.eng.cam.ac.uk/~cd229/

Copyright © Cambridge University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Possible Futures

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Doubling down on Schrödinger's cat May 27th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Spintronics

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Spin lifetime anisotropy of graphene is much weaker than previously reported May 10th, 2016

Spintronics for future information technologies: Spin currents in topological insulators controlled May 2nd, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Chip Technology

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Diamonds closer to becoming ideal semiconductors: Researchers find new method for doping single crystals of diamond May 25th, 2016

Dartmouth team creates new method to control quantum systems May 24th, 2016

Nanoelectronics

Researchers demonstrate size quantization of Dirac fermions in graphene: Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices May 20th, 2016

Graphene: A quantum of current - When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene May 20th, 2016

New type of graphene-based transistor will increase the clock speed of processors: Scientists have developed a new type of graphene-based transistor and using modeling they have demonstrated that it has ultralow power consumption compared with other similar transistor devices May 19th, 2016

Self-healing, flexible electronic material restores functions after many breaks May 17th, 2016

Announcements

Fast, stretchy circuits could yield new wave of wearable electronics May 30th, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Simple attraction: Researchers control protein release from nanoparticles without encapsulation: U of T Engineering discovery stands to improve reliability and fabrication process for treatments to conditions such as spinal cord damage and stroke May 28th, 2016

Scientists illuminate a hidden regulator in gene transcription: New super-resolution technique visualizes important role of short-lived enzyme clusters May 27th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic