Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fluorographene: The World’s Thinnest Insulator

A stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >1012Ù) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young’s modulus of 100 N m−1 and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.
A stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >1012Ù) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young’s modulus of 100 N m−1 and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.

Abstract:
The remarkable properties of graphene and Teflon have been combined in a new material by the winners of this year's Nobel Prize for Physics.

Fluorographene: The World’s Thinnest Insulator

UK | Posted on November 4th, 2010

Kostya Novoselov and Andre Geim, working at the University of Manchester, UK, first isolated graphene in 2004. It was a tricky task, as one would expect if a Nobel Prize is among the rewards, even if it did involve using humble adhesive tape to peel away surfaces one layer at a time. They found graphene to be the thinnest and strongest form of carbon, and that it could conduct heat better than any other known material. As a conductor of electricity, it performs just as well as copper. Their most recent endeavours have led to a new derivative material that is just as strong and even more stable than the original graphene, but that does not conduct electricity at all: so-called fluorographene.

Graphene itself is a single atomic layer of the material graphite, commonly found in pencils. On a molecular level, it has a flat honeycomb structure of connecting hexagons with carbon atoms at the vertices. Clouds of electrons spread across the top and bottom surfaces, which is why the material conducts electricity so well.

The current achievement of the Manchester group, working closely with international collaborators, is to place a fluorine atom at every single carbon atom, thereby destroying the electron cloud and preventing electricity from flowing under normal conditions, but not impinging on the structural integrity of the carbon framework (see graphic). In previous work, they had added hydrogen atoms instead of fluorine, but found the resulting material to be unstable at high temperatures.

The latest breakthrough is published this week in the journal Small (*). Rahul Raveendran-Nair is a postgraduate researcher at the University of Manchester and responsible for the publication. He describes fluorographene as "the thinnest possible insulator, made by attaching fluorine atoms to each of the carbon atoms in graphene. It is the first stoichiometric chemical derivative of graphene and it is a wide-gap semiconductor. Fluorographene is a mechanically strong and chemically and thermally stable compound. Properties of this new material are very similar to Teflon and we call this material 2D Teflon."

Developing a suitable method for making this 2D Teflon was not simple. "Fluorine is a highly reactive element, and it reacts with all most everything. So the major challenge was to fully fluorinate graphene without damaging the graphene and its supporting substrates. Our fluorination of single-layer graphene membranes on chemically inert support grid and bulk graphene paper at elevated temperature overcomes this technical problem," explains Raveendran-Nair.

The authors envisage that fluorographene will be used in electronics, but acknowledge that "for realistic electronic applications the electronic quality has to be improved. We hope this can be achieved very soon. Some possible electronic applications of fluorographene are its use as a tunnel barrier and as a high-quality insulator or barrier material for organic electronics." Other fields of application are also possible. For example, as a wide-gap semiconductor that is fully transparent to visible light, fluorographene could well find use in LEDs (light-emitting diodes) and displays.

The Manchester group was not the only one involved, and collaborators from China (Shenyang National Laboratory for Materials Science), The Netherlands (Radboud University of Nijmegen), Poland (Institute of Electronic Materials Technology), and Russia (Nikolaev Institute of Inorganic Chemistry) added their expertise. According to Raveendran-Nair, having such a large team helped undertake a thorough investigation of fluorographene; "All of us worked very hard to make this project successful. We used a large variety of characterisation techniques and very detailed studies to understand the properties of this new material."

During the course of the project the leaders were named as Nobel Laureates, but apparently life working in the group has not changed very much. "Even in their new busy life both professors still work very closely with all those in the group and are very much involved in the day-to-day research", says Raveendran-Nair. "Working under them is a great inspiration. It is both a rewarding and enjoyable place to undertake research."

(*) "Fluorographene: A Two-Dimensional Counterpart of Teflon", Rahul R. Nair et al., Small 2010; DOI: doi.wiley.com/10.1002/smll.201001555

####

For more information, please click here

Contacts:
Dr. Rahul Raveendran-Nair www.condmat.physics.manchester.ac.uk/people/postgrad/nair/

Department of Physics and Astronomy,
University of Manchester,
Oxford Road,
Manchester, M13 9PL, UK
Tel: +44 (0) 161 275 4074
Fax: +44 (0) 161 275 4056

Copyright © WILEY-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Possible Futures

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Creating a new kind of metallic glass December 7th, 2017

Academic/Education

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Chip Technology

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Leti Integrates Hybrid III-V Silicon Lasers on 200mm Wafers with Standard CMOS Process December 6th, 2017

Leti Breakthroughs Point Way to Significant Improvements in SoC Memories December 6th, 2017

Nanoelectronics

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Will Present 11 Papers and Host More-than-Moore Technologies Workshop November 14th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Discoveries

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

Wheat gets boost from purified nanotubes: Rice University toxicity study shows plant growth enhanced by -- but only by -- purified nanotubes December 6th, 2017

Announcements

Leti Develops World’s First Micro-Coolers for CERN Particle Detectors: Leti Design, Fabrication and Packaging Expertise Extends to Very Large Scientific Instruments December 11th, 2017

UCLA chemists synthesize narrow ribbons of graphene using only light and heat: Tiny structures could be next-generation solution for smaller electronic devices December 8th, 2017

Untangling DNA: Researchers filter the entropy out of nanopore measurements December 8th, 2017

Device makes power conversion more efficient: New design could dramatically cut energy waste in electric vehicles, data centers, and the power grid December 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project