Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fluorographene: The World’s Thinnest Insulator

A stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >1012Ù) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young’s modulus of 100 N m−1 and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.
A stoichiometric derivative of graphene with a fluorine atom attached to each carbon. Raman, optical, structural, micromechanical, and transport studies show that the material is qualitatively different from the known graphene-based nonstoichiometric derivatives. Fluorographene is a high-quality insulator (resistivity >1012Ù) with an optical gap of 3 eV. It inherits the mechanical strength of graphene, exhibiting a Young’s modulus of 100 N m−1 and sustaining strains of 15%. Fluorographene is inert and stable up to 400 °C even in air, similar to Teflon.

Abstract:
The remarkable properties of graphene and Teflon have been combined in a new material by the winners of this year's Nobel Prize for Physics.

Fluorographene: The World’s Thinnest Insulator

UK | Posted on November 4th, 2010

Kostya Novoselov and Andre Geim, working at the University of Manchester, UK, first isolated graphene in 2004. It was a tricky task, as one would expect if a Nobel Prize is among the rewards, even if it did involve using humble adhesive tape to peel away surfaces one layer at a time. They found graphene to be the thinnest and strongest form of carbon, and that it could conduct heat better than any other known material. As a conductor of electricity, it performs just as well as copper. Their most recent endeavours have led to a new derivative material that is just as strong and even more stable than the original graphene, but that does not conduct electricity at all: so-called fluorographene.

Graphene itself is a single atomic layer of the material graphite, commonly found in pencils. On a molecular level, it has a flat honeycomb structure of connecting hexagons with carbon atoms at the vertices. Clouds of electrons spread across the top and bottom surfaces, which is why the material conducts electricity so well.

The current achievement of the Manchester group, working closely with international collaborators, is to place a fluorine atom at every single carbon atom, thereby destroying the electron cloud and preventing electricity from flowing under normal conditions, but not impinging on the structural integrity of the carbon framework (see graphic). In previous work, they had added hydrogen atoms instead of fluorine, but found the resulting material to be unstable at high temperatures.

The latest breakthrough is published this week in the journal Small (*). Rahul Raveendran-Nair is a postgraduate researcher at the University of Manchester and responsible for the publication. He describes fluorographene as "the thinnest possible insulator, made by attaching fluorine atoms to each of the carbon atoms in graphene. It is the first stoichiometric chemical derivative of graphene and it is a wide-gap semiconductor. Fluorographene is a mechanically strong and chemically and thermally stable compound. Properties of this new material are very similar to Teflon and we call this material 2D Teflon."

Developing a suitable method for making this 2D Teflon was not simple. "Fluorine is a highly reactive element, and it reacts with all most everything. So the major challenge was to fully fluorinate graphene without damaging the graphene and its supporting substrates. Our fluorination of single-layer graphene membranes on chemically inert support grid and bulk graphene paper at elevated temperature overcomes this technical problem," explains Raveendran-Nair.

The authors envisage that fluorographene will be used in electronics, but acknowledge that "for realistic electronic applications the electronic quality has to be improved. We hope this can be achieved very soon. Some possible electronic applications of fluorographene are its use as a tunnel barrier and as a high-quality insulator or barrier material for organic electronics." Other fields of application are also possible. For example, as a wide-gap semiconductor that is fully transparent to visible light, fluorographene could well find use in LEDs (light-emitting diodes) and displays.

The Manchester group was not the only one involved, and collaborators from China (Shenyang National Laboratory for Materials Science), The Netherlands (Radboud University of Nijmegen), Poland (Institute of Electronic Materials Technology), and Russia (Nikolaev Institute of Inorganic Chemistry) added their expertise. According to Raveendran-Nair, having such a large team helped undertake a thorough investigation of fluorographene; "All of us worked very hard to make this project successful. We used a large variety of characterisation techniques and very detailed studies to understand the properties of this new material."

During the course of the project the leaders were named as Nobel Laureates, but apparently life working in the group has not changed very much. "Even in their new busy life both professors still work very closely with all those in the group and are very much involved in the day-to-day research", says Raveendran-Nair. "Working under them is a great inspiration. It is both a rewarding and enjoyable place to undertake research."

(*) "Fluorographene: A Two-Dimensional Counterpart of Teflon", Rahul R. Nair et al., Small 2010; DOI: doi.wiley.com/10.1002/smll.201001555

####

For more information, please click here

Contacts:
Dr. Rahul Raveendran-Nair www.condmat.physics.manchester.ac.uk/people/postgrad/nair/

Department of Physics and Astronomy,
University of Manchester,
Oxford Road,
Manchester, M13 9PL, UK
Tel: +44 (0) 161 275 4074
Fax: +44 (0) 161 275 4056

Copyright © WILEY-VCH

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Possible Futures

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Chip Technology

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Electro-optical switch transmits data at record-low temperatures: Operating at temperatures near absolute zero, switch could enable significantly faster data processing with lower power consumption March 20th, 2017

Nanoelectronics

Scientists discover new 'boat' form of promising semiconductor: GeSe Uncommon form attenuates semiconductor's band gap size March 23rd, 2017

UC researchers use gold coating to control luminescence of nanowires: University of Cincinnati physicists manipulate nanowire semiconductors in pursuit of making electronics smaller, faster and cheaper March 17th, 2017

A SOI wafer is a suitable substrate for gallium nitride crystals: Improved characteristics in power electronics and radio applications can be achieved by using a SOI wafer for gallium nitride growth March 4th, 2017

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

Discoveries

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Announcements

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project