Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Unlocking new business potential with sustainable solutions

Abstract:
* Bayer MaterialScience at K 2010 in Dusseldorf, Hall 6, Stand A 75
* The inventor company turns ‘Megatrends to Business'

Unlocking new business potential with sustainable solutions

Dusseldorf | Posted on October 27th, 2010

Bayer MaterialScience will use the latest technology to showcase more than 80 innovative developments at the 18th International Trade Fair for Plastics and Rubber - K 2010 - from October 27 to November 3, 2010. Under the slogan ‘From Megatrends to Business', the company's stand A 75 in Hall 6 will comprise over 1,000 square meters devoted to sustainable solutions in the fields of climate protection, technology, mobility, living and health.

"The demographic shifts taking place in many societies, global climate change and the increasing shortage of resources are all driving our search for sustainable solutions," says Patrick Thomas, Chief Executive Officer of Bayer MaterialScience. "At the same time, we are focusing on exploring new business opportunities by fulfilling future needs. We are known around the world as ‘The Inventor Company' and K 2010 is the perfect environment in which to position ourselves as a technology leader offering innovative products, applications and solutions."

For the first time, visitors to the stand will be able to experience the world of Bayer MaterialScience in a whole new dimension - by using interactive tables to gain a visual insight into the full spectrum of the company's developments. The various topics are linked by means of intelligent navigation and visitors will be able to see how products from Bayer MaterialScience could prove a positive and sustainable influence on the way we live in the future. Exhibits also provide specific examples of new applications.

"Bayer MaterialScience is analyzing the likely effects of social and economic change on many areas and is applying its know-how and experience to developing the relevant solutions," explains Manfred Rink, the company's head of New Business and stand manager for K 2010.

Energy generation, logistics and climate protection

Bayer MaterialScience is committed to developing sustainable technologies and materials, particularly when it comes to utilizing energy from renewable sources such as the sun and wind. With photovoltaics, for example, the focus is on customer-specific solutions featuring higher energy efficiency, lower manufacturing costs and a broader range of applications. The company's current development portfolio offers a variety of solutions including polyurethane sheathing for solar modules with an integrated assembly system; a sandwich composite of polycarbonate sheets with solar cells; and flexible solar modules of higher efficiency. A solar air collector roof insulation system developed by puren gmbh, in conjunction with Bayer MaterialScience, highlights an intelligent means of combining energy generation from solar radiation with highly efficient thermal insulation.

Also being highlighted is an ingenious approach to logistics that could result in major reductions in energy consumption and emissions of the greenhouse gas carbon dioxide. As distances food products need to travel before they reach the consumer increases - particularly in the growing megacities of Asia and Latin America - Bayer MaterialScience is continuing to improve the already excellent insulating properties of rigid polyurethane foam systems for use in the refrigeration chain. Such measures could, for example, boost the energy efficiency of cooling appliances, thereby helping to conserve more resources.

Simply replacing all old appliances with an energy efficiency rating lower than "A" with economical appliances fulfilling the highest efficiency rating, carbon dioxide emissions could be cut by around 22 million metric tons annually in the European Union alone. The resultant drop in energy consumption would be equivalent to around six percent of the energy savings stipulated in the Kyoto Protocol.

Sustainable technology innovations

One new development from Bayer MaterialScience in this area is polyurethane nanofoams. These materials could eventually double the thermal insulation performance of refrigeration in a matter of years. Foams with pore sizes of under 150 nanometers would considerably reduce the energy consumption of appliances and thus make a major contribution to cutting carbon dioxide emissions. Alternatively, they could be used to make the walls of such appliances thinner, creating more space for refrigerated goods.

Carbon nanotubes from the Baytubes® range now make it possible to manufacture wind turbine rotor blades that convert wind power into electricity far more efficiently. Their length was previously limited to around 60 meters, as larger blades did not have the required strength. Nanotubes impart a high degree of stiffness to the rotor blades and are also very lightweight, meaning that the rotors can be constructed on a larger scale and provide a more efficient means of power generation.

Mobility that protects the climate

Also in the area of mobility and transportation, Bayer MaterialScience will showcase a range of innovative developments at K 2010. Bertrand Piccard and André Borschberg have come up with an ambitious project to circumnavigate the globe in an aircraft powered solely by solar energy. As official partner of the Solar Impulse project, Bayer MaterialScience is developing ultra-light materials to reduce the weight of the next prototype to less than 1,600 kilograms. During the first night flight in summer of this year, a very lightweight rigid polyurethane foam was among the materials on board. Based on raw materials and technology developed by the Leverkusen based Bayer MaterialScience, the foam was used in the cockpit cladding, the engine cowling and the wings. The next solar-powered aircraft will contain a significantly greater proportion of Bayer MaterialScience materials and technology.

The polycarbonate Makrolon® offers clear advantages over glass in the field of automotive glazing. As the plastic weighs up to 50 percent less than traditional glazing, it leads to a considerable reduction in fuel consumption. At K 2010, Bayer MaterialScience will be presenting the prototype concept in a complete, one-piece tailgate with windshield. Unlike conventional models with a metal support and pane of glass, this highly integrated component features a completely joint-free outer shell made of polycarbonate.

Contemporary living with environmentally friendly material solutions

Bayer MaterialScience has also developed an extensive range of energy-efficient solutions for the construction industry that combine design and functionality. One key element of these activities is the global EcoCommercial Building Program, which is designed to provide the construction sector with a unique portfolio of services and material solutions for energy-efficient, economical building projects. As part of this project, Bayer MaterialScience is working with a network of members from various disciplines to support professionals such as architects, project managers, construction managers, developers and managers of larger companies in the creation of public and commercial buildings that far outstrip previous sustainability standards. The services on offer range from energy efficiency assessments during the planning phase and the use of environmentally friendly materials to the generation of renewable energies.

Thanks to their low energy consumption, low maintenance requirements and long service life, LED lighting technologies will soon supplant traditional lighting systems. To contribute to this global trend, Bayer MaterialScience has developed customized polycarbonates which are now proving their mettle in initial series applications. Some examples from the automotive industry include LED lenses for low-beam and full-beam headlights and fiber optics for daytime running lights in the front headlamps of the new Audi A8. The complex components were developed in collaboration with Audi AG and Hella KGaA Hueck & Co. Experts from Bayer MaterialScience have also come up with raw materials and technical solutions for highly transparent two-component polyurethane casting compounds that can be used to manufacture lighting strips and other lighting elements with light-emitting diodes.

Innovative robotics for rehabilitation patients

Bayer MaterialScience is also a leader in polymer science for the health and medical sector. A joint project undertaken with Professor Sankai of Cyberdyne Inc. - a spin-off company of Tsukuba University in Japan - is focusing on an intelligent robot suit known as HAL® (Hybrid Assistive Limb) that supports physical movements and could eventually make wheelchairs a thing of the past. The suit works by ‘reading' nerve signals from the brain to the muscles. At that moment, very weak bioelectric signals are registered on the skin and HAL® receives these signals via sensors. These signals activate small electric motors in the suit that assist the movement of patients wearing it. The developers are also examining how HAL® could also find applications in areas involving heavy physical work. Bayer MaterialScience has developed a polycarbonate grade which can be used for the complex shape of the robot and is then covered with a film.

Further information on Bayer MaterialScience's trade fair presentation in Hall 6, Stand A 75 can be found at www.k2010.bayermaterialscience.com.

All journalists are cordially invited to visit the Bayer MaterialScience Press Center on the gallery of the stand in Hall 6, where they will find opportunities to discuss the innovations on display. Interviews with experts from the company can be arranged on request.

Forward-Looking Statements
This release may contain forward-looking statements based on current assumptions and forecasts made by Bayer Group or subgroup management. Various known and unknown risks, uncertainties and other factors could lead to material differences between the actual future results, financial situation, development or performance of the company and the estimates given here. These factors include those discussed in Bayer's public reports which are available on the Bayer website at http://www.bayer.com. The company assumes no liability whatsoever to update these forward-looking statements or to conform them to future events or developments.

####

About Bayer MaterialScience
With 2009 sales of EUR 7.5 billion, Bayer MaterialScience is among the world’s largest polymer companies. Business activities are focused on the manufacture of high-tech polymer materials and the development of innovative solutions for products used in many areas of daily life. The main segments served are the automotive, electrical and electronics, construction and the sports and leisure industries. At the end of 2009, Bayer MaterialScience had 30 production sites and employed approximately 14,300 people around the globe. Bayer MaterialScience is a Bayer Group company.

For more information, please click here

Copyright © Bayer MaterialScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Quantum manipulation power for quantum information processing gets a boost: Improving the efficiency of quantum heat engines involves reducing the number of photons in a cavity, ultimately impacting quantum manipulation power October 14th, 2017

Possible Futures

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Nanotubes/Buckyballs/Fullerenes/Nanorods

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Regulation of two-dimensional nanomaterials: New driving force for lithium-ion batteries July 26th, 2017

Materials/Metamaterials

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

The secret to improving liquid crystal's mechanical performance: Better lubricating properties of lamellar liquid crystals could stem from changing the mobility of their structural dislocations by adding nanoparticles October 13th, 2017

Rice U. lab surprised by ultraflat magnets: Researchers create atom-thick alloys with unanticipated magnetic properties October 13th, 2017

Announcements

Long nanotubes make strong fibers: Rice University researchers advance characterization, purification of nanotube wires and films October 17th, 2017

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Spin current detection in quantum materials unlocks potential for alternative electronics October 15th, 2017

Environment

Single ‘solitons’ promising for optical technologies October 9th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

High-tech electronics made from autumn leaves: New process converts biomass waste into useful electronic devices August 30th, 2017

Nanoparticles pollution rises 30 percent when flex-fuel cars switch from bio to fossil: Study carried out in São Paulo, home to the world's largest flex fuel urban fleet, shows increase of ultrafine particulate matter when ethanol prices rose and consumption fell August 28th, 2017

Energy

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Home

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Industrial Nanotech, Inc. Announces Plans to Spin Off New Product Line to Major Paint Compan November 9th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Events/Classes

Nanometrics Announces Preliminary Results for the Third Quarter of 2017: Quarterly Results Impacted by Delays in Revenue Recognition on Multiple Systems into Japan October 12th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

Solar/Photovoltaic

New nanomaterial can extract hydrogen fuel from seawater: Hybrid material converts more sunlight and can weather seawater's harsh conditions October 4th, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project