Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Abstract:
Advancements in Illuminex's patented nanowire array production process pave the way to commercial solar/photovoltaic textiles for rooftop power generation, PV textiles and other large solar power applications.

Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Lancaster, PA | Posted on September 20th, 2010

Illuminex, a nanotechnology company developing processes to manufacture functional nanomaterials for sustainable energy applications, is applying recent advancements in its patented anodic aluminum oxide nanowire array production process to fabricate crystalline silicon nanowire (SiNW) array photovoltaic materials for commercial solar devices. Their bottom-up approach uses molecular self-assembly to manufacture aluminum catalyzed SiNW. Their process is now demonstrating photovoltaic conversion efficiencies that, when scaled macroscopically, are comparable to crystalline silicon wafer solar cells, except they use 1/100th the amount of silicon per meter of active solar cell area, thereby yielding very significant cost advantages. The technology holds strong potential to reduce the cost of solar electricity from the current value of $0.20-0.40/kWh to under $0.10/kWh, making solar competitive with other forms of electrical energy generation.

Based in Lancaster, PA and founded by MIT PhD nanomaterial scientists, Illuminex is commercializing nanowire array production processes and device applications that leverage the distinct physical properties manifested in the nanowire arrays. The company's recent advancement in manufacturing crystalline silicon uses only aluminum and glass as the precursor materials. Illuminex photovoltaic materials can potentially deliver the conversion efficiency and other properties that established crystalline silicon as the dominant material in a $30 billion photovoltaic industry, but at a much lower manufactured cost.

The potential for Illuminex to introduce disruptive functional nanomaterials to the solar cell market lies in its unique, low-cost methods to produce SiNW arrays using aluminum in a multi-functional capacity (structure, template, catalyst, dopant source, electrode isolator, and anode). Illuminex nanostructured materials can be produced at growth rates up to 10 microns/minute with minimal waste materials or process by-products. This is accomplished using a standard chemical vapor deposition (CVD) reactor and employing the Vapor-Liquid-Solid (VLS) growth method with Illuminex substrate technology in a manner that is readily scalable for mass production.

Illuminex, in collaboration with the Pennsylvania State University, recently applied its VLS and anodic aluminum processes to fabricate these breakthrough SiNW- array-based photovoltaic devices. In June, the research group demonstrated the growth of macroscopic SiNWs on low-cost substrates and the fabrication of a VLS SiNW photovoltaic device (2.5 x 2.5 mm) with an efficiency of 2.4 % and single aluminum catalyzed nanowire p-i-n photovoltaic junctions with a preliminary efficiency of 5.3 %.

According to Illuminex CEO Joe Habib, "This is comparable to the highest single nanowire junction efficiency reported to date, 3.3 % (Leiber/Harvard. Nature 2007). Our next step is to make an array over 1 cm² using aluminum on glass resulting in >5 % device efficiency. Then we move on to get that 20 % efficiency obtained using crystalline silicon wafers at a fraction of the cost using 1/100th the material."

To accelerate its photovoltaic materials and development efforts, and with financial assistance from the State of Pennsylvania, the company just completed construction of a new silicon processing laboratory that houses a high-capacity chemical vapor deposition system for SiNW growth. Illuminex has 3 laboratories in the Burle Industrial park (formerly RCA) totaling over 5500 sq. ft.

Illuminex can fabricate the silicon nanowire diodes on glass, metal, threads or virtually any surface that can be coated with a thin Al layer These materials are particularly well suited to PV panel-based solar power generation, and the Company is currently collaborating with Philadelphia University to produce a photovoltaic textile. The textile consists of threads covered with pillar-shaped silicon p-n junction diode nanowire arrays emanating about the periphery of a 200 micron diameter thread for looming into an electronic or "Smart" textile.

####

About Illuminex
Illuminex was founded in 2003 by Dr. Joe Habib, an MIT Fellow active in nanotechnology ventures for over a decade. Headquartered in Lancaster , PA , Illuminex has 10 employees. Its facilities include three fully equipped research laboratories totaling 5500 square feet, including a brand new CVD facility. Illuminex fabricates nanowires made from a wide range of materials in diverse geometries on numerous substrates. Its near-term products target energy verticals, specifically silicon nanowire arrays for photovoltaics, and copper-silicon nanocomposites for lithium ion battery anodes and copper nanowires for thermal/heat pipes. Illuminex has developed significant patented intellectual property in material formulations, manufacturing methods, and device applications. It has 11 patents pending and 1 patent issued (US 7713849). For more information, visit www.illuminex.biz

For more information, please click here

Contacts:
George Lauro
Member, Board of Directors
Founding Partner, Alteon Capital Partners

408-688-1982

Copyright © Illuminex

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Openings/New facilities/Groundbreaking/Expansion

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Nanophase Opens New Polishing Applications Support Laboratory September 9th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Govt.-Legislation/Regulation/Funding/Policy

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

New non-invasive technique could revolutionize the imaging of metastatic cancer September 17th, 2014

Self Assembly

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Molecular self-assembly controls graphene-edge configuration September 10th, 2014

Rice chemist wins rare NSF Special Creativity Award: Grant extension will bolster Zubarev's effort to produce gold nanorods September 8th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Energy

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Textiles/Clothing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Silver Replaced with Copper Nanoparticles to Produce Antibacterial Fabrics August 25th, 2014

New Nanosorbent Helps Elimination of Colorants from Textile Wastewater August 25th, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Research partnerships

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

The Pocket Project will develop a low-cost and accurate point-of-care test to diagnose Tuberculosis: ICN2 holds a follow-up meeting of the Project on September 18th - 19th September 18th, 2014

Recruiting bacteria to be technology innovation partners: September 17th, 2014

Carbon Sciences Developing Breakthrough Technology to Mass-Produce Graphene -- the New Miracle Material: Company Enters Into an Agreement With the University of California, Santa Barbara (UCSB) to Fund the Further Development of a New Graphene Process September 16th, 2014

Solar/Photovoltaic

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Indium/Copper Sulfide Compound Semi-Conductor Synthesized through New Method September 8th, 2014

Material development on the nanoscale: Doped graphene nanoribbons with potential September 8th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE