Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Abstract:
Advancements in Illuminex's patented nanowire array production process pave the way to commercial solar/photovoltaic textiles for rooftop power generation, PV textiles and other large solar power applications.

Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Lancaster, PA | Posted on September 20th, 2010

Illuminex, a nanotechnology company developing processes to manufacture functional nanomaterials for sustainable energy applications, is applying recent advancements in its patented anodic aluminum oxide nanowire array production process to fabricate crystalline silicon nanowire (SiNW) array photovoltaic materials for commercial solar devices. Their bottom-up approach uses molecular self-assembly to manufacture aluminum catalyzed SiNW. Their process is now demonstrating photovoltaic conversion efficiencies that, when scaled macroscopically, are comparable to crystalline silicon wafer solar cells, except they use 1/100th the amount of silicon per meter of active solar cell area, thereby yielding very significant cost advantages. The technology holds strong potential to reduce the cost of solar electricity from the current value of $0.20-0.40/kWh to under $0.10/kWh, making solar competitive with other forms of electrical energy generation.

Based in Lancaster, PA and founded by MIT PhD nanomaterial scientists, Illuminex is commercializing nanowire array production processes and device applications that leverage the distinct physical properties manifested in the nanowire arrays. The company's recent advancement in manufacturing crystalline silicon uses only aluminum and glass as the precursor materials. Illuminex photovoltaic materials can potentially deliver the conversion efficiency and other properties that established crystalline silicon as the dominant material in a $30 billion photovoltaic industry, but at a much lower manufactured cost.

The potential for Illuminex to introduce disruptive functional nanomaterials to the solar cell market lies in its unique, low-cost methods to produce SiNW arrays using aluminum in a multi-functional capacity (structure, template, catalyst, dopant source, electrode isolator, and anode). Illuminex nanostructured materials can be produced at growth rates up to 10 microns/minute with minimal waste materials or process by-products. This is accomplished using a standard chemical vapor deposition (CVD) reactor and employing the Vapor-Liquid-Solid (VLS) growth method with Illuminex substrate technology in a manner that is readily scalable for mass production.

Illuminex, in collaboration with the Pennsylvania State University, recently applied its VLS and anodic aluminum processes to fabricate these breakthrough SiNW- array-based photovoltaic devices. In June, the research group demonstrated the growth of macroscopic SiNWs on low-cost substrates and the fabrication of a VLS SiNW photovoltaic device (2.5 x 2.5 mm) with an efficiency of 2.4 % and single aluminum catalyzed nanowire p-i-n photovoltaic junctions with a preliminary efficiency of 5.3 %.

According to Illuminex CEO Joe Habib, "This is comparable to the highest single nanowire junction efficiency reported to date, 3.3 % (Leiber/Harvard. Nature 2007). Our next step is to make an array over 1 cm² using aluminum on glass resulting in >5 % device efficiency. Then we move on to get that 20 % efficiency obtained using crystalline silicon wafers at a fraction of the cost using 1/100th the material."

To accelerate its photovoltaic materials and development efforts, and with financial assistance from the State of Pennsylvania, the company just completed construction of a new silicon processing laboratory that houses a high-capacity chemical vapor deposition system for SiNW growth. Illuminex has 3 laboratories in the Burle Industrial park (formerly RCA) totaling over 5500 sq. ft.

Illuminex can fabricate the silicon nanowire diodes on glass, metal, threads or virtually any surface that can be coated with a thin Al layer These materials are particularly well suited to PV panel-based solar power generation, and the Company is currently collaborating with Philadelphia University to produce a photovoltaic textile. The textile consists of threads covered with pillar-shaped silicon p-n junction diode nanowire arrays emanating about the periphery of a 200 micron diameter thread for looming into an electronic or "Smart" textile.

####

About Illuminex
Illuminex was founded in 2003 by Dr. Joe Habib, an MIT Fellow active in nanotechnology ventures for over a decade. Headquartered in Lancaster , PA , Illuminex has 10 employees. Its facilities include three fully equipped research laboratories totaling 5500 square feet, including a brand new CVD facility. Illuminex fabricates nanowires made from a wide range of materials in diverse geometries on numerous substrates. Its near-term products target energy verticals, specifically silicon nanowire arrays for photovoltaics, and copper-silicon nanocomposites for lithium ion battery anodes and copper nanowires for thermal/heat pipes. Illuminex has developed significant patented intellectual property in material formulations, manufacturing methods, and device applications. It has 11 patents pending and 1 patent issued (US 7713849). For more information, visit www.illuminex.biz

For more information, please click here

Contacts:
George Lauro
Member, Board of Directors
Founding Partner, Alteon Capital Partners

408-688-1982

Copyright © Illuminex

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Openings/New facilities/Groundbreaking/Expansion

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Haydale Announce Dedicated Graphene Inks Manufacturing Capability March 25th, 2015

LamdaGen Corporation Launches Taiwan Diagnostic Subsidiary March 19th, 2015

Silicon Impulse, New Leti IC Design Platform, Offers One-Stop-Shop For Ultra-low-power Technologies: End-to-end Design Accelerator Platform Targets Energy-efficient Internet of Things Applications and New Devices Using FD-SOI Technology, while Expanding Ecosystem March 10th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

Princess Margaret scientists convert microbubbles to nanoparticles: Harnessing light to advance tumor imaging, provide platform for targeted treatment March 30th, 2015

Nanoscale worms provide new route to nano-necklace structures March 29th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Self Assembly

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Four Scientists With Major Contributions to Research at Brookhaven Lab Named American Physical Society Fellows March 17th, 2015

Nanotubes self-organize and wiggle: Evolution of a nonequilibrium system demonstrates MEPP February 10th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Announcements

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

From tobacco to cyberwood March 31st, 2015

Energy

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

Hong Kong Investors Bullish on Dais Analytic Invest $5.75M, Provide $60M Contract, and Create New Joint Venture Company March 26th, 2015

Textiles/Clothing

Scientists discover gecko secret March 16th, 2015

Energy-generating cloth could replace batteries in wearable devices March 4th, 2015

Australian startup creates world’s first 100% cotton hydrophobic T-Shirts February 3rd, 2015

Graphene displays clear prospects for flexible electronics February 2nd, 2015

Research partnerships

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

'Atomic chicken-wire' is key to faster DNA sequencing March 30th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

Solar/Photovoltaic

Wrapping carbon nanotubes in polymers enhances their performance: Scientists at Japan's Kyushu University say polymer-wrapped carbon nanotubes hold much promise in biotechnology and energy applications March 30th, 2015

Solving molybdenum disulfide's 'thin' problem: Research team increases material's light emission by twelve times March 29th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE