Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Advancements in Illuminex's patented nanowire array production process pave the way to commercial solar/photovoltaic textiles for rooftop power generation, PV textiles and other large solar power applications.

Illuminex Fabricates Silicon Nanowire Array Photovoltaic Device

Lancaster, PA | Posted on September 20th, 2010

Illuminex, a nanotechnology company developing processes to manufacture functional nanomaterials for sustainable energy applications, is applying recent advancements in its patented anodic aluminum oxide nanowire array production process to fabricate crystalline silicon nanowire (SiNW) array photovoltaic materials for commercial solar devices. Their bottom-up approach uses molecular self-assembly to manufacture aluminum catalyzed SiNW. Their process is now demonstrating photovoltaic conversion efficiencies that, when scaled macroscopically, are comparable to crystalline silicon wafer solar cells, except they use 1/100th the amount of silicon per meter of active solar cell area, thereby yielding very significant cost advantages. The technology holds strong potential to reduce the cost of solar electricity from the current value of $0.20-0.40/kWh to under $0.10/kWh, making solar competitive with other forms of electrical energy generation.

Based in Lancaster, PA and founded by MIT PhD nanomaterial scientists, Illuminex is commercializing nanowire array production processes and device applications that leverage the distinct physical properties manifested in the nanowire arrays. The company's recent advancement in manufacturing crystalline silicon uses only aluminum and glass as the precursor materials. Illuminex photovoltaic materials can potentially deliver the conversion efficiency and other properties that established crystalline silicon as the dominant material in a $30 billion photovoltaic industry, but at a much lower manufactured cost.

The potential for Illuminex to introduce disruptive functional nanomaterials to the solar cell market lies in its unique, low-cost methods to produce SiNW arrays using aluminum in a multi-functional capacity (structure, template, catalyst, dopant source, electrode isolator, and anode). Illuminex nanostructured materials can be produced at growth rates up to 10 microns/minute with minimal waste materials or process by-products. This is accomplished using a standard chemical vapor deposition (CVD) reactor and employing the Vapor-Liquid-Solid (VLS) growth method with Illuminex substrate technology in a manner that is readily scalable for mass production.

Illuminex, in collaboration with the Pennsylvania State University, recently applied its VLS and anodic aluminum processes to fabricate these breakthrough SiNW- array-based photovoltaic devices. In June, the research group demonstrated the growth of macroscopic SiNWs on low-cost substrates and the fabrication of a VLS SiNW photovoltaic device (2.5 x 2.5 mm) with an efficiency of 2.4 % and single aluminum catalyzed nanowire p-i-n photovoltaic junctions with a preliminary efficiency of 5.3 %.

According to Illuminex CEO Joe Habib, "This is comparable to the highest single nanowire junction efficiency reported to date, 3.3 % (Leiber/Harvard. Nature 2007). Our next step is to make an array over 1 cm² using aluminum on glass resulting in >5 % device efficiency. Then we move on to get that 20 % efficiency obtained using crystalline silicon wafers at a fraction of the cost using 1/100th the material."

To accelerate its photovoltaic materials and development efforts, and with financial assistance from the State of Pennsylvania, the company just completed construction of a new silicon processing laboratory that houses a high-capacity chemical vapor deposition system for SiNW growth. Illuminex has 3 laboratories in the Burle Industrial park (formerly RCA) totaling over 5500 sq. ft.

Illuminex can fabricate the silicon nanowire diodes on glass, metal, threads or virtually any surface that can be coated with a thin Al layer These materials are particularly well suited to PV panel-based solar power generation, and the Company is currently collaborating with Philadelphia University to produce a photovoltaic textile. The textile consists of threads covered with pillar-shaped silicon p-n junction diode nanowire arrays emanating about the periphery of a 200 micron diameter thread for looming into an electronic or "Smart" textile.


About Illuminex
Illuminex was founded in 2003 by Dr. Joe Habib, an MIT Fellow active in nanotechnology ventures for over a decade. Headquartered in Lancaster , PA , Illuminex has 10 employees. Its facilities include three fully equipped research laboratories totaling 5500 square feet, including a brand new CVD facility. Illuminex fabricates nanowires made from a wide range of materials in diverse geometries on numerous substrates. Its near-term products target energy verticals, specifically silicon nanowire arrays for photovoltaics, and copper-silicon nanocomposites for lithium ion battery anodes and copper nanowires for thermal/heat pipes. Illuminex has developed significant patented intellectual property in material formulations, manufacturing methods, and device applications. It has 11 patents pending and 1 patent issued (US 7713849). For more information, visit

For more information, please click here

George Lauro
Member, Board of Directors
Founding Partner, Alteon Capital Partners


Copyright © Illuminex

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Stretchy supercapacitors power wearable electronics August 25th, 2016

Openings/New facilities/Groundbreaking/Expansion

GLOBALFOUNDRIES to Expand Presence in China with 300mm Fab in Chongqing: Company plans new manufacturing facility and additional design capabilities to serve customers in China May 31st, 2016

Albertan Science Lab Opens in India May 7th, 2016

SUNY Poly Partnership with Japan's New Energy and Industrial Development Organization Drives Investment in and Installation of Emerging ‘Green’ Technologies at World-Class 'Zero Energy Nano' Building March 22nd, 2016

Composite Pipe Long Term Testing Facility February 10th, 2016


Analog DNA circuit does math in a test tube: DNA computers could one day be programmed to diagnose and treat disease August 25th, 2016

New approach to determining how atoms are arranged in materials August 25th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Self Assembly

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

WSU researchers develop shape-changing 'smart' material: Heat, light stimulate self-assembly July 4th, 2016


Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016


New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016


Stretchy supercapacitors power wearable electronics August 25th, 2016

Weird, water-oozing material could help quench thirst: Nanorods' behavior first theorized 20 years ago, but not seen until now June 13th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016


Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic