Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Good vibrations: New atom-scale products on horizon

This is a laser in Dr. Kambhampati's lab that is used to shine light on quantum dots. Credit: Credit: Dept. of Chemistry, McGill University.
This is a laser in Dr. Kambhampati's lab that is used to shine light on quantum dots. Credit: Credit: Dept. of Chemistry, McGill University.

Abstract:
Breakthrough discovery enables nanoscale manipulation of the piezoelectric effect

Good vibrations: New atom-scale products on horizon

Quebec | Posted on August 23rd, 2010

The generation of an electric field by the compression and expansion of solid materials is known as the piezoelectric effect, and it has a wide range of applications ranging from everyday items such as watches, motion sensors and precise positioning systems. Researchers at McGill University's Department of Chemistry have now discovered how to control this effect in nanoscale semiconductors called "quantum dots," enabling the development of incredibly tiny new products.

Although the word "quantum" is used in everyday language to connote something very large, it actually means the smallest amount by which certain physical quantities can change. A quantum dot has a diameter of only 10 to 50 atoms, or less than 10 nanometres. By comparison, the diameter of the DNA double-helix is 2 nanometres. The McGill researchers have discovered a way to make individual charges reside on the surface of the dot, which produces a large electric field within the dot. This electric field produces enormous piezoelectric forces causing large and rapid expansion and contraction of the dots within a trillionth of a second. Most importantly, the team is able to control the size of this vibration.

Cadmium Selenide quantum dots can be used in a wide range of technological applications. Solar power is one area that has been explored, but this new discovery has paved way for other nanoscale device applications for these dots. This discovery offers a way of controlling the speed and switching time of nanoelectronic devices, and possibly even developing nanoscale power supplies, whereby a small compression would produce a large voltage.

"The piezoelectric effect has never been manipulated at this scale before, so the range of possible applications is very exciting," explained Pooja Tyagi, a PhD researcher in Professor Patanjali Kambhampati's laboratory. "For example, the vibrations of a material can be analyzed to calculate the pressure of the solvent they are in. With further development and research, maybe we could measure blood pressure non-invasively by injecting the dots, shining a laser on them, and analyzing their vibration to determine the pressure." Tyagi notes that Cadium Selenide is a toxic metal, and so one of the hurdles to overcome with regard to this particular example would be finding a replacement material.

The research was published in Nano Letters and received funding from the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada, and the Fonds Québécois de la Recherche sur la Nature et les Technologies.

####

For more information, please click here

Contacts:
William Raillant-Clark

514-398-2189

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

NEMS

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Mechanical quanta see the light January 20th, 2016

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Possible Futures

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Announcements

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Nanotech Grants Options September 22nd, 2016

Coffee-infused foam removes lead from contaminated water September 21st, 2016

Quantum Dots/Rods

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Quantum dots with impermeable shell: A powerful tool for nanoengineering August 12th, 2016

Diamond-based light sources will lay a foundation for quantum communications of the future: Electrified quantum diamond can become the heart of quantum networks and computers of the future August 7th, 2016

A new type of quantum bits July 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic