Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A cellular housekeeper, and potential target of obesity drugs, caught in action

New clues emerge about how a molecular machine breaks down unwanted proteins in cells thanks to work conducted at Berkeley Lab's Advanced Light Source. In this atomic-scale model of the molecular machine, tripeptidyl peptidase II, the cyan ribbon depicts the skeleton of the giant molecule. The grey enclosure represents the lower resolution surface and is included to aid visualization.
New clues emerge about how a molecular machine breaks down unwanted proteins in cells thanks to work conducted at Berkeley Lab's Advanced Light Source. In this atomic-scale model of the molecular machine, tripeptidyl peptidase II, the cyan ribbon depicts the skeleton of the giant molecule. The grey enclosure represents the lower resolution surface and is included to aid visualization.

Abstract:
Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory have obtained the closest look yet of how a gargantuan molecular machine breaks down unwanted proteins in cells, a critical housekeeping chore that helps prevent diseases such as cancer.

A cellular housekeeper, and potential target of obesity drugs, caught in action

Berkeley, CA | Posted on August 2nd, 2010

They pieced together the molecular-scale changes the machine undergoes as it springs into action, ready to snip apart a protein.

Their work provides valuable clues as to how the molecular machine, a giant enzyme called tripeptidyl peptidase II, keeps cells tidy and disease free. It could also inform the development of obesity-fighting drugs. A closely related enzyme in the brain can cause people to feel hungry even after they eat a hearty meal.

"We can now better understand how this very important enzyme carries out its work, which has not been described at a molecular scale until now," says Bing Jap, a biophysicist in Berkeley Lab's Life Sciences Division. He led the research with scientists from the University of California at Berkeley and Germany's Max Planck Institute of Biochemistry.

The scientists report their research August 1 in an advance online publication of the journal Nature Structural & Molecular Biology.

Tripeptidyl peptidase II is found in all eukaryotic cells, which are cells that a have membrane-bound nucleus. Eukaryotic cells make up plants and animals. The enzyme's chief duty is to support the pathway that ensures that cells remain healthy and clutter free by breaking down proteins that are misfolded or have outlived their usefulness.

It's not always so helpful, however. A variation of the enzyme in the brain degrades a hormone that makes people feel satiated after a meal. When this hormone becomes unavailable, a person can eat and eat without feeling full, which can lead to obesity.

Tripeptidyl peptidase II is also the largest protein-degrading enzyme, or protease, in eukaryotic cells. It's more than 100 times larger than most other proteases.

Scientists don't know how this behemoth of an enzyme targets and degrades specific proteins — but it's good that the enzyme is so selective. If it degraded every protein it comes across, the cell would quickly die.

"We want to know how it's regulated, how it selects proteins to degrade, and how it cuts them apart," says Jap.

To help answer these questions, his team determined the changes the molecular machine undergoes as it readies itself for action. Using x-ray crystallography, they obtained an atomic-scale resolution structure of the molecular machine in its inactive state. This work was conducted at Berkeley Lab's Advanced Light Source, a national user facility that generates intense x-rays to probe the fundamental properties of substances.

They also developed a lower-resolution, three-dimensional map of the molecular machine in its activated state, meaning it's poised to snip apart a protein. This structure was determined using cryo-electron microscopy.

They then merged these two structures together, one dormant and the other ready to pounce on a protein.

"When we dock these structures, we can begin to ascertain the changes the enzyme undergoes as it transitions from an inactive to an active state," says Peter Walian, a scientist in Berkeley Lab's Life Sciences Division who also contributed to the research.

This first molecular-scale vantage of the enzyme in action offers insights into how it works. For example, the scientists found that only very small proteins can fit in the chamber the enzyme uses to break down proteins.

"This sheds light on how the enzyme targets specific proteins," says Jap.

They also learned more about how the enzyme uses a molecular ruler to mince proteins into pieces that only span three residues.

"This work is yielding valuable clues as to how the giant enzyme carries out very fundamental biological processes, with more insights to come," says Jap. "The obesity-related hormone is one of many interesting targets of the protease. There are likely other proteins and peptides, yet to be discovered, that are processed by this protease."

The research was supported by the National Institute of General Medical Sciences of the National Institutes of Health. The Advanced Light Source is supported by the Department of Energy's Office of Science.

Additional information:
The paper describing this work, titled, "Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II," appears August 1, 2010 in an advance online publication of the journal Nature Structural & Molecular Biology.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. This content is solely the responsibility of Lawrence Berkeley National Laboratory. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

ORNL reports method that takes quantum sensing to new level April 23rd, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Molecular Machines

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

Nanomedicine

Northwestern scientists develop first liquid nanolaser: Technology could lead to new way of doing 'lab on a chip' medical diagnostics April 25th, 2015

Nanotech-enabled moisturizer speeds healing of diabetic skin wounds: Spherical nucleic acids silence gene that interferes with wound healing April 24th, 2015

Fast and accurate 3-D imaging technique to track optically trapped particles April 24th, 2015

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Announcements

Feynman Prize Winners Announced! April 26th, 2015

New ASTM Standards Will Help Educate Present and Future Nanotechnology Workforces April 26th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

QD Vision Wins 2015 Bronze Edison Award for Color IQ™ Quantum Dot Technology April 26th, 2015

Nanobiotechnology

A silver lining: UCSB researchers cradle silver nanoclusters inside synthetic DNA to create a programmed, tunable fluorescent array April 23rd, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Rafts on the cell membrane: Researchers from TU Wien (Vienna) shed light on a big secret of cell membranes: The 'lipid rafts', which have been believed to move within the cell membrane, do not really exist April 21st, 2015

Research partnerships

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Electron spin brings order to high entropy alloys April 23rd, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project