Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > A cellular housekeeper, and potential target of obesity drugs, caught in action

New clues emerge about how a molecular machine breaks down unwanted proteins in cells thanks to work conducted at Berkeley Lab's Advanced Light Source. In this atomic-scale model of the molecular machine, tripeptidyl peptidase II, the cyan ribbon depicts the skeleton of the giant molecule. The grey enclosure represents the lower resolution surface and is included to aid visualization.
New clues emerge about how a molecular machine breaks down unwanted proteins in cells thanks to work conducted at Berkeley Lab's Advanced Light Source. In this atomic-scale model of the molecular machine, tripeptidyl peptidase II, the cyan ribbon depicts the skeleton of the giant molecule. The grey enclosure represents the lower resolution surface and is included to aid visualization.

Abstract:
Scientists from the U.S. Department of Energy's Lawrence Berkeley National Laboratory have obtained the closest look yet of how a gargantuan molecular machine breaks down unwanted proteins in cells, a critical housekeeping chore that helps prevent diseases such as cancer.

A cellular housekeeper, and potential target of obesity drugs, caught in action

Berkeley, CA | Posted on August 2nd, 2010

They pieced together the molecular-scale changes the machine undergoes as it springs into action, ready to snip apart a protein.

Their work provides valuable clues as to how the molecular machine, a giant enzyme called tripeptidyl peptidase II, keeps cells tidy and disease free. It could also inform the development of obesity-fighting drugs. A closely related enzyme in the brain can cause people to feel hungry even after they eat a hearty meal.

"We can now better understand how this very important enzyme carries out its work, which has not been described at a molecular scale until now," says Bing Jap, a biophysicist in Berkeley Lab's Life Sciences Division. He led the research with scientists from the University of California at Berkeley and Germany's Max Planck Institute of Biochemistry.

The scientists report their research August 1 in an advance online publication of the journal Nature Structural & Molecular Biology.

Tripeptidyl peptidase II is found in all eukaryotic cells, which are cells that a have membrane-bound nucleus. Eukaryotic cells make up plants and animals. The enzyme's chief duty is to support the pathway that ensures that cells remain healthy and clutter free by breaking down proteins that are misfolded or have outlived their usefulness.

It's not always so helpful, however. A variation of the enzyme in the brain degrades a hormone that makes people feel satiated after a meal. When this hormone becomes unavailable, a person can eat and eat without feeling full, which can lead to obesity.

Tripeptidyl peptidase II is also the largest protein-degrading enzyme, or protease, in eukaryotic cells. It's more than 100 times larger than most other proteases.

Scientists don't know how this behemoth of an enzyme targets and degrades specific proteins — but it's good that the enzyme is so selective. If it degraded every protein it comes across, the cell would quickly die.

"We want to know how it's regulated, how it selects proteins to degrade, and how it cuts them apart," says Jap.

To help answer these questions, his team determined the changes the molecular machine undergoes as it readies itself for action. Using x-ray crystallography, they obtained an atomic-scale resolution structure of the molecular machine in its inactive state. This work was conducted at Berkeley Lab's Advanced Light Source, a national user facility that generates intense x-rays to probe the fundamental properties of substances.

They also developed a lower-resolution, three-dimensional map of the molecular machine in its activated state, meaning it's poised to snip apart a protein. This structure was determined using cryo-electron microscopy.

They then merged these two structures together, one dormant and the other ready to pounce on a protein.

"When we dock these structures, we can begin to ascertain the changes the enzyme undergoes as it transitions from an inactive to an active state," says Peter Walian, a scientist in Berkeley Lab's Life Sciences Division who also contributed to the research.

This first molecular-scale vantage of the enzyme in action offers insights into how it works. For example, the scientists found that only very small proteins can fit in the chamber the enzyme uses to break down proteins.

"This sheds light on how the enzyme targets specific proteins," says Jap.

They also learned more about how the enzyme uses a molecular ruler to mince proteins into pieces that only span three residues.

"This work is yielding valuable clues as to how the giant enzyme carries out very fundamental biological processes, with more insights to come," says Jap. "The obesity-related hormone is one of many interesting targets of the protease. There are likely other proteins and peptides, yet to be discovered, that are processed by this protease."

The research was supported by the National Institute of General Medical Sciences of the National Institutes of Health. The Advanced Light Source is supported by the Department of Energy's Office of Science.

Additional information:
The paper describing this work, titled, "Hybrid Molecular Structure of the Giant Protease Tripeptidyl Peptidase II," appears August 1, 2010 in an advance online publication of the journal Nature Structural & Molecular Biology.

####

About Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory provides solutions to the world’s most urgent scientific challenges including clean energy, climate change, human health, and a better understanding of matter and force in the universe. It is a world leader in improving our lives and knowledge of the world around us through innovative science, advanced computing, and technology that makes a difference. This content is solely the responsibility of Lawrence Berkeley National Laboratory. Berkeley Lab is a U.S. Department of Energy (DOE) national laboratory managed by the University of California for the DOE Office of Science.

For more information, please click here

Contacts:
Dan Krotz
(510) 486-4019

Copyright © Lawrence Berkeley National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Electric-car battery materials could harm key soil bacteria February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Scientists take nanoparticle snapshots February 10th, 2016

Possible Futures

Chemical cages: New technique advances synthetic biology February 10th, 2016

New thin film transistor may lead to flexible devices: Researchers engineer an electronics first, opening door to flexible electronics February 10th, 2016

Electron's 1-D metallic surface state observed: A step for the prediction of electronic properties of extremely-fine metal nanowires in next-generation semiconductors February 9th, 2016

A fast solidification process makes material crackle February 8th, 2016

Academic/Education

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

COD Grad Begins Postdoctoral Fellow at Harvard University: Marsela Jorgolli's Passion for Physics Has Led to a Decade of Academic Research That Continues at Harvard University as a Postdoctoral Fellow February 2nd, 2016

Heriot-Watt's Institute of Photonics & Quantum Sciences uses the Deben Microtest 2 kN tensile stage to characterise ceramics and engineering plastics January 21st, 2016

Multiple uses for the JPK NanoWizard AFM system in the Smart Interfaces in Environmental Nanotechnology Group at the University of Illinois at Urbana-Champaign January 20th, 2016

Molecular Machines

'Spermbots' could help women trying to conceive (video) January 15th, 2016

Scientists blueprint tiny cellular 'nanomachine' December 17th, 2015

Nano-walkers take speedy leap forward with first rolling DNA-based motor: Fastest DNA motor holds potential for disease diagnostics December 1st, 2015

Rice makes light-driven nanosubmarines: Speedy single-molecule submersibles are a first November 16th, 2015

Nanomedicine

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Nanoparticle therapy that uses LDL and fish oil kills liver cancer cells February 9th, 2016

Announcements

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

Creating a color printer that uses a colorless, non-toxic ink inspired by nature February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Nanobiotechnology

Canadian Scientists Develop Innovative Protein Test for Zika February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Nanoparticle reduces targeted cancer drug's toxicity February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

Research partnerships

Research reveals carbon films can give microchips energy storage capability: International team from Drexel University and Paul Sabatier University reveals versatility of carbon films February 11th, 2016

SLAC X-ray laser turns crystal imperfections into better images of important biomolecules: New method could remove major obstacles to studying structures of complex biological machines February 11th, 2016

Chemical cages: New technique advances synthetic biology February 10th, 2016

SUNY Poly and GLOBALFOUNDRIES Announce New $500M R&D Program in Albany To Accelerate Next Generation Chip Technology: Arrival of Second Cutting Edge EUV Lithography Tool Launches New Patterning Center That Will Generate Over 100 New High Tech Jobs at SUNY Poly February 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic