Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Prof. Danny Porath - novel memory and logic device
Prof. Danny Porath - novel memory and logic device

Abstract:
Hebrew U. Scientists Demonstrate Novel Memory and Logic Device

Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Jerusalem | Posted on July 22nd, 2010

Scientists from the Hebrew University of Jerusalem have succeeded in showing how it is possible to greatly expand the memory capacity of future computers through the use of memory units based on silica nanoparticles combined with protein molecules obtained from the poplar tree.

In doing so, they say, they have developed an alternative avenue to miniaturize memory elements while increasing the number and capacity of memory and functional logic elements in computers. This approach, they say, could replace standard fabrication techniques in use until now for increasing computer memory capacity, a process which involves ever-increasing manufacturing costs.

The Hebrew University project involves the genetic engineering of poplar protein to enable its hybridization with a silicon nanoparticle. In this process, the nanoparticles are attached to the inner pore of a stable, ring-like protein (the poplar derivative), and these hybrids are arranged in a large network, or array, of very close, molecular memory elements.

Prof. Danny Porath and his graduate student Izhar Medalsy of the Institute of Chemistry at the Hebrew University have succeeded in successfully demonstrating how stable computing activity in a tiny memory element can be carried out in this way. The practical result is a cost-effective system that greatly increases existing memory capacity while significantly reducing the space required to carry out this volume of activity.

The genetically engineered poplar-derived protein complexes were developed in the laboratory of Prof. Oded Shoseyhov in the framework of the doctoral thesis of Dr. Arnon Heyman at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University.

An article describing the work of the scientists has been published in the journal Nature Nanotechnology.

The researchers are hopeful that this technology, which has been patented by Yissum, the technology transfer company of the Hebrew University, and licensed to Fulcrum SP Ltd., will prove to be a commercially successful alternative to current computer systems.

####

For more information, please click here

Copyright © Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

NanoSafe, Inc. announces the addition of the Labconco Protector® Glove Box to its NanoSafe Tested™ registry April 23rd, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Academic/Education

Global leader in solar cell manufacturing eyes New York for major expansion outside of Japan: CNSE and Solar Frontier Explore $700 Million Investment, Job Creation in New York State April 22nd, 2014

University of Waterloo Visits China to Strengthen Bonds With Research Partners April 21st, 2014

Director Wally Pfister joins UC Berkeley neuroengineers to discuss the science behind ‘Transcendence’ April 7th, 2014

First annual science week highlights STEM pipeline and partnerships: UB, SUNY Buffalo State and ECC team up with the City of Buffalo and its schools for April 7-11 events April 3rd, 2014

Chip Technology

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Harris & Harris Group Notes the Receipt of Proceeds From the Sale of Molecular Imprints' Semiconductor Business to Canon April 22nd, 2014

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Memory Technology

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

First principles approach to creating new materials: Solid-state chemistry and theoretical physics combined to help discover new materials with useful properties April 8th, 2014

Domain walls in nanowires cleverly set in motion: Important prerequisite for the development of nano-components for data storage and sensor technology / Publication in Nature Communications April 8th, 2014

Nanoelectronics

Progress made in developing nanoscale electronics: New research directs charges through single molecules April 21st, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Announcements

Making graphene work for real-world devices: Fundamental research in phonon scattering helps researchers design graphene materials for applications April 24th, 2014

Return on investment for kit and promotion materials April 24th, 2014

Protecting olive oil from counterfeiters April 24th, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE