Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Prof. Danny Porath - novel memory and logic device
Prof. Danny Porath - novel memory and logic device

Abstract:
Hebrew U. Scientists Demonstrate Novel Memory and Logic Device

Protein From Poplar Trees Can be Used to Greatly Reduce Size of Memory Elements and Increase the Density of Computer Memory

Jerusalem | Posted on July 22nd, 2010

Scientists from the Hebrew University of Jerusalem have succeeded in showing how it is possible to greatly expand the memory capacity of future computers through the use of memory units based on silica nanoparticles combined with protein molecules obtained from the poplar tree.

In doing so, they say, they have developed an alternative avenue to miniaturize memory elements while increasing the number and capacity of memory and functional logic elements in computers. This approach, they say, could replace standard fabrication techniques in use until now for increasing computer memory capacity, a process which involves ever-increasing manufacturing costs.

The Hebrew University project involves the genetic engineering of poplar protein to enable its hybridization with a silicon nanoparticle. In this process, the nanoparticles are attached to the inner pore of a stable, ring-like protein (the poplar derivative), and these hybrids are arranged in a large network, or array, of very close, molecular memory elements.

Prof. Danny Porath and his graduate student Izhar Medalsy of the Institute of Chemistry at the Hebrew University have succeeded in successfully demonstrating how stable computing activity in a tiny memory element can be carried out in this way. The practical result is a cost-effective system that greatly increases existing memory capacity while significantly reducing the space required to carry out this volume of activity.

The genetically engineered poplar-derived protein complexes were developed in the laboratory of Prof. Oded Shoseyhov in the framework of the doctoral thesis of Dr. Arnon Heyman at the Robert H. Smith Faculty of Agriculture, Food and Environment of the Hebrew University.

An article describing the work of the scientists has been published in the journal Nature Nanotechnology.

The researchers are hopeful that this technology, which has been patented by Yissum, the technology transfer company of the Hebrew University, and licensed to Fulcrum SP Ltd., will prove to be a commercially successful alternative to current computer systems.

####

For more information, please click here

Copyright © Hebrew University of Jerusalem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

Possible Futures

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Chip Technology

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

GraphExeter illuminates bright new future for flexible lighting devices June 23rd, 2016

Soft decoupling of organic molecules on metal June 23rd, 2016

Memory Technology

Ensuring the future affordability of wind turbines, computers and electric cars June 2nd, 2016

Automating DNA origami opens door to many new uses: Like 3-D printing did for larger objects, method makes it easy to build nanoparticles out of DNA May 30th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Magnetic vortices defy temperature fluctuations: Common magnetic mineral is reliable witness to Earth's history April 19th, 2016

Nanoelectronics

Soft decoupling of organic molecules on metal June 23rd, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Novel energy inside a microcircuit chip: VTT developed an efficient nanomaterial-based integrated energy June 10th, 2016

Announcements

How cancer cells spread and squeeze through tiny blood vessels (video) June 30th, 2016

Oxford Instruments and Dresden High Magnetic Field Laboratory collaborate to develop HTS magnet technology components for high field superconducting magnet systems June 29th, 2016

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic