Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-sized light mill drives micro-sized disk

This STM image shows a gammadion gold light mill nanomotor embedded in a silica microdisk. Inset is a magnified top view of the light mill.
This STM image shows a gammadion gold light mill nanomotor embedded in a silica microdisk. Inset is a magnified top view of the light mill.

Abstract:
While those wonderful light sabers in the Star Wars films remain the figment of George Lucas' fertile imagination, light mills - rotary motors driven by light - that can power objects thousands of times greater in size are now fact.

Nano-sized light mill drives micro-sized disk

Berkeley, CA | Posted on July 5th, 2010

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory and the University of California (UC) Berkeley have created the first nano-sized light mill motor whose rotational speed and direction can be controlled by tuning the frequency of the incident light waves. It may not help conquer the Dark Side, but this new light mill does open the door to a broad range of valuable applications, including a new generation of nanoelectromechanical systems (NEMS), nanoscale solar light harvesters, and bots that can perform in vivo manipulations of DNA and other biological molecules.

"We have demonstrated a plasmonic motor only 100 nanometers in size that when illuminated with linearly polarized light can generate a torque sufficient to drive a micrometre-sized silica disk 4,000 times larger in volume," says Xiang Zhang, a principal investigator with Berkeley Lab's Materials Sciences Division and director of UC Berkeley's Nano-scale Science and Engineering Center (SINAM), who led this research. "In addition to easily being able to control the rotational speed and direction of this motor, we can create coherent arrays of such motors, which results in greater torque and faster rotation of the microdisk."

The success of this new light mill stems from the fact that the force exerted on matter by light can be enhanced in a metallic nanostructure when the frequencies of the incident light waves are resonant with the metal's plasmons - surface waves that roll through a metal's conduction electrons. Zhang and his colleagues fashioned a gammadion-shaped light mill type of nanomotor out of gold that was structurally designed to maximize the interactions between light and matter. The metamaterial-style structure also induced orbital angular momentum on the light that in turn imposed a torque on the nanomotor.

"The planar gammadion gold structures can be viewed as a combination of four small LC-circuits for which the resonant frequencies are determined by the geometry and dielectric properties of the metal," says Zhang. "The imposed torque results solely from the gammadion structure's symmetry and interaction with all incident light, including light which doesn't carry angular momentum. Essentially we use design to encode angular momentum in the structure itself. Since the angular momentum of the light need not be pre-determined, the illuminating source can be a simple linearly polarized plane-wave or Gaussian beam."

The results of this research are reported in the journal Nature Nanotechnology in a paper titled, " Light-driven nanoscale plasmonic motors." Co-authoring the paper with Zhang were Ming Liu, Thomas Zentgraf, Yongmin Liu and Guy Bartal.

It has long been known that the photons in a beam of light carry both linear and angular momentum that can be transferred to a material object. Optical tweezers and traps, for example, are based on the direct transfer of linear momentum. In 1936, Princeton physicist Richard Beth demonstrated that angular momentum - in either its spin or orbital form - when altered by the scattering or absorption of light can produce a mechanical torque on an object. Previous attempts to harness this transfer of angular momentum for a rotary motor have been hampered by the weakness of the interaction between photons and matter.

"The typical motors had to be at least micrometres or even millimeters in size in order to generate a sufficient amount of torque," says lead author Ming Liu, a PhD student in Zhang's group. "We've shown that in a nanostructure like our gammadion gold light mill, torque is greatly enhanced by the coupling of the incident light to plasmonic waves. The power density of our motors is very high. As a bonus, the rotational direction is controllable, a counterintuitive fact based on what we learn from wind mills."

The directional change, Liu explains, is made possible by the support of the four-armed gammadion structure for two major resonance modes - a wavelength of 810 nanometers, and a wavelength of 1,700 nanometers. When illuminated with a linearly polarized Gaussian beam of laser light at the shorter wavelength, the plasmonic motor rotated counterclockwise at a rate of 0.3 Hertz. When illuminated with a similar laser beam but at the larger wavelength, the nanomotor rotated at the same rate of speed but in a clockwise direction.

"When multiple motors are integrated into one silica microdisk, the torques applied on the disk from the individual motors accumulate and the overall torque is increased," Liu says. "For example, a silica disk embedded with four plasmonic nanomotors attains the same rotation speed with only half of the laser power applied as a disk embedded with a single motor."

The nanoscale size of this new light mill makes it ideal for powering NEMS, where the premium is on size rather than efficiency. Generating relatively powerful torque in a nanosized light mill also has numerous potential biological applications, including the controlled unwinding and rewinding of the DNA double helix. When these light mill motors are structurally optimized for efficiency, they could be useful for harvesting solar energy in nanoscopic systems.

"By designing multiple motors to work at different resonance frequencies and in a single direction, we could acquire torque from the broad range of wavelengths available in sunlight," Liu says.

This research was supported by DOE's Office of Science.


For more information about the research of Xiang Zhang visit xlab.me.berkeley.edu/xlabnews.htm

For more information about the Berkeley Nano-scale Science and Engineering Center visit www.sinam.org/


####

About Berkeley Lab
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research for DOE’s Office of Science and is managed by the University of California. Visit our Website at www.lbl.gov/

For more information, please click here

Contacts:
Lynn Yarris
(510) 486-5375

Copyright © Berkeley Lab

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

NEMS

One string to rule them all April 17th, 2018

Leti Scientists Participating in Sessions on Med Tech, Automotive Technologies, MEMS, Si-photonics and Lithography at SEMICON Europa: Teams also Will Demonstrate Technology Advances in Telecom, Data Fusion, Energy, Silicon Photonics and 3D Integration October 18th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nano-photonics meets nano-mechanics: Controlling on-chip nano-optics by graphene nano-opto-mechanics January 22nd, 2016

Govt.-Legislation/Regulation/Funding/Policy

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Possible Futures

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Academic/Education

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Nanomedicine

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Announcements

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

Physicists devise method to reveal how light affects materials: The new method adds to the understanding of the fundamental laws governing the interaction of electrons and light June 15th, 2018

Tripling the Energy Storage of Lithium-Ion Batteries: Scientists have synthesized a new cathode material from iron fluoride that surpasses the capacity limits of traditional lithium-ion batteries June 14th, 2018

Nanobiotechnology

Camouflaged nanoparticles used to deliver killer protein to cancer June 17th, 2018

Graphene carpets: So neurons communicate better: Research by SISSA reveals that graphene can strengthen neuronal activity, confirming the unique properties of this nanomaterial. The study has been published on Nature Nanotechnology June 13th, 2018

New optical sensor can determine if molecules are left or right 'handed' June 13th, 2018

Promising news from biomedicine: DNA origami more resilient than previously understood June 4th, 2018

Research partnerships

Evidence for a new property of quantum matter revealed: Electrical dipole activity detected in a quantum material unlike any other tested June 11th, 2018

Scientists use photonic chip to make virtual movies of molecular motion June 6th, 2018

Quantum Interference May Be Key to Smaller Insulators: Breakthrough could jumpstart further miniaturization of transistors June 6th, 2018

Tunable diamond string may hold key to quantum memory: A process similar to guitar tuning improves storage time of quantum memory May 24th, 2018

Solar/Photovoltaic

Team achieves two-electron chemical reactions using light energy, gold May 15th, 2018

Hematene joins parade of new 2D materials: Rice University-led team extracts 3-atom-thick sheets from common iron oxide May 8th, 2018

Harvesting clean hydrogen fuel through artificial photosynthesis May 3rd, 2018

Research gives new ray of hope for solar fuel April 27th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project