Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > UB chemist to receive award from American Chemical Society

Sarbajit Banerjee, assistant professor of chemistry
Sarbajit Banerjee, assistant professor of chemistry

Abstract:
A UB chemist has been recognized by the American Chemical Society for his research on a material that could be used in the next generation of transistors.

By ELLEN GOLDBAUM

UB chemist to receive award from American Chemical Society

Buffalo, NY | Posted on June 7th, 2010

Sarbajit Banerjee, assistant professor of chemistry, will be awarded the ExxonMobil Solid-State Chemistry Award at the American Chemical Society's fall meeting in August. The award will be presented by the ACS Division of Inorganic Chemistry.

The award is given "to recognize significant contributions in solid-state chemistry by junior faculty at U.S. institutions and support solid-state chemistry as a recognized discipline," according to the ACS website. Banerjee is the sole recipient this year.

"It's definitely an honor to be recognized so early in my career," Banerjee says, acknowledging that the accolade rewards everyone involved in his project, especially graduate and undergraduate students. "It's essentially recognition from the community that what we do is important."

Banerjee received his undergraduate education at the University of Delhi and his doctorate at Stony Brook University. Before coming to UB, he was a postdoctoral research scientist at Columbia University.

Banerjee's research includes the study of vanadium oxide, currently used in night-vision technologies. Vanadium oxide is a unique substance that switches between metallic and non-metallic phases at a specific temperature, usually about 160 degrees Fahrenheit. By reducing vanadium oxide to a nanomaterial and doping the material with tungsten, Banerjee and his team have reduced the tipping point to a minimum of around -4 degrees Fahrenheit.

"When we look at crystal structures, what we find is that when you make them small, like a nanoparticle, the arrangement of atoms can change," he says. "We can get all these cool materials that don't normally exist at room temperature. We have a lot of control over how we stabilize them, too."

Another benefit of using these oxides as nanomaterials, Banerjee explains, is that they act more predictably in smaller pieces.

"You can uncover new phenomena that are obscured in larger materials," he says. "You can uncover its intrinsic properties because there aren't as many defects in it."

The research could lead to a new generation of smart materials that could be used in windows, for example, for thermally specific heat conductivity. Banerjee also notes that the material potentially could be used in "high-mobility switching elements, and the next generation of transistors."

He is interested in how different disciplines can collaborate to find chemical solutions to human problems.

"Science is becoming more interdisciplinary as time goes by," he says. "It's actually part of what UB 2020 is all about. A lot of challenges are at the intersection of different disciplines."

Banerjee says he often has students in his classes who are studying engineering, as well as those who are pursuing the natural sciences. For him, the examination and manipulation of the chemical world has merit for everyone, not just those vested in academic interests. Chemistry, he says, is a point of view that unlocks the secret structures within the objects humans take for granted.

"Solid-state chemistry really is the way I see the world," Banerjee says.

####

For more information, please click here

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Chemistry

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

Possible Futures

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Chip Technology

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Nanometrics to Announce Second Quarter Financial Results on August 1, 2017 July 14th, 2017

Nanoelectronics

Tokyo Institute of Technology research: Antiaromatic molecule displays record electrical conductance July 19th, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Thinking thin brings new layering and thermal abilities to the semiconductor industry: In a breakthrough for the semiconductor industry, researchers demonstrate a new layer transfer technique called "controlled spalling" that creates many thin layers from a single gallium nitride July 11th, 2017

Announcements

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project