Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Speedy couriers in the cell

"Optical tweezers"
"Optical tweezers"

Abstract:
Why motor proteins have brakes

Speedy couriers in the cell

Germany | Posted on May 24th, 2010

Every single one of our cells contains so-called motor proteins that transport important substances from one location to another. However, very little is known about how exactly these transport processes occur. Biophysicists at the Technische Universitaet Muenchen (TUM) and Ludwig Maximilians Universitaet Muenchen (LMU) have now succeeded in explaining fundamental functions of a particularly interesting motor protein. They report their findings in the current issue of the Proceedings of the National Academy of Sciences (USA).

Motorized transport proteins are one of the keys to the development of higher organisms. It is they that enable the cell to transport important substances directly and quickly to a specific location in the cell. As bacteria cannot do this, they are not able to form larger cells or even large organisms with many cells. Particularly important are fast transport proteins in the primary cilia, the cell's antennas, with which they channel information from the surroundings into the cell.

Like trucks on a highway, kinesins transport cellular loads to their destinations. They do this by crawling along protein fibers, so-called microtubules, which extend through the entire cell. Kinesins consist of two long intertwined protein chains. At one end of every protein there is a head that can attach itself to certain structures on the surface of the microtubules; the freight is attached to the other end.

Very special kinesins are at work in the cilia of the Caenorhabditis elegans nematode: they consist of two different protein chains and are therefore especially suitable for investigating the transport mechanisms. As freight, the researchers attached small plastic beads to the ends of these motor proteins. They can manipulate these beads with "optical tweezers," a specially formed laser beam.

One end of the protein molecule was held with the optical tweezers; the other was able to walk on microtubules. This enabled the scientists to measure the force with which the motor protein can pull. In this experimental setup, the kinesin-2 with its freight walks as far as 1,500 nanometers in tiny steps measuring a mere eight nanometers. "If we didn't hold it back, it might still go a lot further," says Zeynep Ökten from the Institute for Cell Biology at LMU.

The kinesin-2 investigated consists of one KLP11 and one KLP20 protein. By exchanging the heads of the chains, the researchers were able to show that KLP11 is a non-processive motor protein. It only becomes a transport protein in combination with KLP20. In further experiments they were able to explain why nature chooses this unusual combination: KLP20 proteins have no "brakes." A transport protein made of two KLP20 units would be permanently on the go and would waste energy. The KLP11, in contrast, has a mechanism called autoinhibition, which makes sure that the transport protein is at a standstill if no freight is attached.

"Our results show that a molecular motor must take on a large number of functions over and above simple transport, if it wants to operate successfully in a cell," says Professor Matthias Rief from the Physics Department of the TU Muenchen. It must be possible to switch the motor on and off, and it must be able to accept a load needed at a specific location and hand it over at the destination. "It is impressive how nature manages to combine all of these functions in one molecule," Rief says. "In this respect it is still far superior to all the efforts of modern nanotechnology and serves as a great example to us all."

This work was supported by funds from the Cluster of Excellence Center for Integrated Protein Science Munich (CIPSM), a Long Term European Molecular Biology Organization fellowship and grants from the Deutsche Forschungsgemeinschaft (DFG) and the Friedrich-Baur-Stiftung.

Original Publication:

Regulation of a heterodimeric kinesin-2 through an unprocessive motor domain that is turned processive by its partner,
Melanie Brunnbauer, Felix Mueller-Planitz, Süleyman Kösem, Thi-Hieu Hoa, Renate Dombi, J. Christof M. Gebhardt, Matthias Rief, and Zeynep Ökten
PNAS Early Edition, May 17, 2010 - www.pnas.org/cgi/doi/10.1073/pnas.1005177107

####

For more information, please click here

Contacts:
Prof. Matthias Rief
Chair for Experimental Physics (E 22)
Technische Universitaet Muenchen
James-Franck-Str. 1, 85748
Garching, Germany
Tel: +49 89 289 12471
Fax: +49 89 289 12523

Copyright © Technische Universitaet Muenchen

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers identify structural changes that occur in enveloped viruses before invading host August 21st, 2018

Magnetic antiparticles offer new horizons for information technologies: Computer simulations reveal new behavior of antiskyrmions in gradually increased electric currents August 21st, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Govt.-Legislation/Regulation/Funding/Policy

Researchers identify structural changes that occur in enveloped viruses before invading host August 21st, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

UVA multidisciplinary engineering team designs technology for smart materials: The invention could lead to devices and manufactured goods, such as fabrics, that can dynamically regulate between thermally insulating and cooling August 17th, 2018

Scientists turn to the quantum realm to improve energy transportation August 17th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Molecular Machines

Biophysics -- lighting up DNA-based nanostructures April 25th, 2018

Tiny nanomachine successfully completes test drive: Researchers at the University of Bonn and the research institute Caesar build a one-wheeled vehicle out of DNA rings April 11th, 2018

Piecework at the nano assembly line: Electric fields drive nano-motors a 100,000 times faster than previous methods January 22nd, 2018

'Gyroscope' molecules form crystal that's both solid and full of motion: New type of molecular machine designed by UCLA researchers could have wide-ranging applications in technology and science January 16th, 2018

Announcements

Researchers identify structural changes that occur in enveloped viruses before invading host August 21st, 2018

Magnetic antiparticles offer new horizons for information technologies: Computer simulations reveal new behavior of antiskyrmions in gradually increased electric currents August 21st, 2018

Energy-efficient spin current can be controlled by magnetic field and temperature: SCMR effect simplifies the design of fundamental spintronic components August 20th, 2018

Color effects from transparent 3D printed nanostructures: New design tool automatically creates nanostructure 3D print templates for user-given colors Scientists present work at prestigious SIGGRAPH conference August 18th, 2018

Tools

Novel nanoparticle-based approach detects and treats oral plaque without drugs August 17th, 2018

Nanometrics Delivers 100th: Atlas III System for Advanced Process Control Metrology Atlas III: Systems are qualified and in production for advanced devices in DRAM, 3D-NAND and Foundry/Logic August 2nd, 2018

Picosun’s ALD solutions make quality watches tick July 26th, 2018

Nanometrics Announces Participation in Upcoming Investor Conferences July 25th, 2018

Photonics/Optics/Lasers

Scientists create antilaser for ultracold atoms condensate August 16th, 2018

Breaking down the Wiedemann-Franz law: In a study exploring the coupling between heat and particle currents in a gas of strongly interacting atoms, physicists at ETH Zurich find puzzling behaviours August 10th, 2018

Optical fibers that can 'feel' the materials around them August 7th, 2018

NUST MISIS scientists present metamaterial for solar cells and nanooptics July 23rd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project