Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > An Odd Couple

Abstract:
Photoluminescent liquid crystals based on metal clusters

An Odd Couple

Weinheim, Germany | Posted on April 30th, 2010

Combine liquid crystals (mesogens) and metal clusters and you get clustomesogens -- a new class of compounds, the first examples of which have now been produced by scientists at the Universities of Rennes (France) and Bucharest (Rumania). As the team headed by Yann Molard and Stephane Cordier reports in the journal Angewandte Chemie, when irradiated, the material glows intensely in the red and infrared range.

Liquid crystals are familiar from LC displays. These materials behave like something between a liquid and a solid. On one hand, their molecules are oriented and partially ordered like in a crystal; on the other, they are not rigid, but truly mobile, like in a liquid. When a voltage is applied, liquid crystals can be switched between different states.

Another class of materials of interest to the optoelectronics field is metal clusters. Clusters are aggregates of a few atoms. Such clusters of metal atoms show unusual electronic, magnetic, and optical properties that arise from the metal-metal bonds in the cluster, and the properties are completely different from those of macroscopic metal particles. The team was able to unite the interesting characteristics of both types of material in the form of a new class of materials called clustomesogens, which contain metal clusters in a liquid-crystalline phase.

Liquid crystals with metal-metal bonds have been rare and limited to species with only two connected metal atoms. The scientists have now constructed a liquid crystal that contains octahedral clusters made of six molybdenum atoms. For stabilization, there are eight bromide ions coordinated as ligands above the eight surfaces of the octahedron. The researchers attached special organic ligands to the six corners of the octahedron. These ligands are aromatic rings, each equipped with three long hydrocarbon chains, the ends of which are also made of two aromatic rings. Simple warming triggers a self-organization process by which the clusters stretch out to form long, narrow units (see figure) arranged in a lamellar structure. The flat rings at the ends of the ligands of neighboring layers are interleaved; this structure has liquid-crystalline properties.

The material shows strong luminescence in the red/near infrared range when excited over a broad range of wavelengths, and this type of material may be useful for the production of red displays and infrared signals. The new class of compounds has been patented in the USA in November 2009 as no. 61/264888.

Author: Yann Molard, Université de Rennes 1 (France),
scienceschimiques.univ-rennes1.fr/csm/personnel/y_molard.html

Title: Clustomesogens: Liquid Crystal Materials Containing Transition-Metal Clusters

Angewandte Chemie International Edition 2010, 49, No. 19, 3351-3355, Permalink to the article: dx.doi.org/10.1002/anie.201000325

####

About Wiley InterScience
Wiley InterScience (www.interscience.wiley.com) provides access to over 3 million articles across nearly 1500 journals and 7000 Online Books and major reference works. It also holds industry leading databases such as The Cochrane Library, chemistry databases and the acclaimed Current Protocols laboratory manuals.

Wiley InterScience is one of the world's premiere resources for study, teaching and advanced research.

For more information, please click here

Contacts:
Editorial office


Amy Molnar (US)


Jennifer Beal (UK)


Alina Boey (Asia)

Copyright © Wiley InterScience

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Display technology/LEDs/SS Lighting/OLEDs

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Graphene oxide making any material suitable to create biosensors: Scientists from Tomsk Polytechnic University have developed a new tool for biomedical research focused on single-cell investigation November 27th, 2017

The next generation of power electronics? Gallium nitride doped with beryllium: How to cut down energy loss in power electronics? The right kind of doping November 9th, 2017

Atomic scale Moiré patterns to push electronic boundaries? November 1st, 2017

Possible Futures

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Ultra-thin optical fibers offer new way to 3-D print microstructures: Novel approach lays groundwork for using 3-D printing to repair tissue in the body January 17th, 2018

Materials/Metamaterials

Ultrathin black phosphorus for solar-driven hydrogen economy: Osaka University researchers use sunlight to make hydrogen with a new nanostructured catalyst based on nanosheets of black phosphorus and bismuth vanadate January 17th, 2018

Nanotube fibers in a jiffy: Rice University lab makes short nanotube samples by hand to dramatically cut production time January 11th, 2018

New oxide and semiconductor combination builds new device potential: Researchers integrated oxide two-dimensional electron gases with gallium arsenide and paved the way toward new opto-electrical devices January 10th, 2018

Ultrafine fibers have exceptional strength: New technique developed at MIT could produce strong, resilient nanofibers for many applications January 5th, 2018

Announcements

New Method Uses DNA, Nanoparticles and Top-Down Lithography to Make Optically Active Structures: Technique could lead to new classes of materials that can bend light, such as for those used in cloaking devices January 18th, 2018

Arrowhead Pharmaceuticals Announces Pricing of Underwritten Public Offering of Common Stock January 18th, 2018

Leti to Demo New Curving Technology at Photonics West that Improves Performance of Optical Components January 18th, 2018

Arrowhead Pharmaceuticals Announces Proposed Underwritten Offering of Common Stock January 17th, 2018

Patents/IP/Tech Transfer/Licensing

IBM Breaks Records to Top U.S. Patent List for 25th Consecutive Year: IBM Inventors Receive Record 9,043 Patents in 2017 in Areas such as Artificial Intelligence, Cloud, Blockchain, Cybersecurity and Quantum Computing January 11th, 2018

A new product to help combat mouldy walls, thanks to technology developed at the ICN2 December 14th, 2017

Chinese market opens up for Carbodeon nanodiamonds: Carbodeon granted Chinese Patent for Nanodiamond-containing Thermoplastic Thermal Compounds December 4th, 2017

Picosun’s ALD nanolaminates improve lifetime and reliability of electronic circuit boards October 24th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project