Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Novel Nanoparticles Prevent Radiation Damage

Arturo Casadevall, M.D., Ph.D.
Arturo Casadevall, M.D., Ph.D.

Abstract:
Tiny, melanin-covered nanoparticles may protect bone marrow from the harmful effects of radiation therapy, according to scientists at Albert Einstein College of Medicine of Yeshiva University who successfully tested the strategy in mouse models. Infusing these particles into human patients may hold promise in the future. The research is described in the current issue of the International Journal of Radiation Oncology, Biology and Physics.

Novel Nanoparticles Prevent Radiation Damage

Bronx, NY | Posted on April 28th, 2010

Radiation therapy is used to kill cancer cells and shrink tumors. But because radiation also damages normal cells, doctors must limit the dose. Melanin, the naturally occurring pigment that gives skin and hair its color, helps shield the skin from the damaging effects of sunlight and has been shown to protect against radiation.

"A technique for shielding normal cells from radiation damage would allow doctors to administer higher doses of radiation to tumors, making the treatment more effective," said Ekaterina Dadachova, Ph.D., associate professor of nuclear medicine and of microbiology & immunology and the Sylvia and Robert S. Olnick Faculty Scholar in Cancer Research at Einstein, as well as senior author of the study.

In previously published research, Dr. Dadachova and colleagues showed that melanin protects against radiation by helping prevent the formation of free radicals, which cause DNA damage, and by scavenging the free radicals that do form.

"We wanted to devise a way to provide protective melanin to the bone marrow," said Dr. Dadachova. "That's where blood is formed, and the bone-marrow stem cells that produce blood cells are extremely susceptible to the damaging effects of radiation."

Dr. Dadachova and her colleagues focused on packaging melanin in particles so small that they would not get trapped by the lungs, liver or spleen. They created "melanin nanoparticles" by coating tiny (20 nanometers in diameter) silica (sand) particles with several layers of melanin pigment that they synthesized in their laboratory.

The researchers found that these particles successfully lodged in bone marrow after being injected into mice. Then, in a series of experiments, they investigated whether their nanoparticles would protect the bone marrow of mice treated with two types of radiation.

In the first experiment, one group of mice was injected with nanoparticles and a second group was not. Three hours later, both groups were exposed to whole-body radiation. For the next 30 days, the researchers monitored the blood of the mice, looking for signs of bone marrow damage such as decreased numbers of white blood cells and platelets.

Compared with the control group, those receiving melanin nanoparticles before radiation exposure fared much better; their levels of white cells and platelets dropped much less precipitously. Ten days after irradiation, for example, platelet levels had fallen by only 10 percent in mice that had received nanoparticles compared with a 60 percent decline in untreated mice. Furthermore, levels of white blood cells and platelets returned to normal much more quickly than in the control mice.

A second experiment assessed not only bone-marrow protection but whether the nanoparticles might have the undesirable effect of infiltrating and protecting tumors being targeted with radiation. Two groups of mice were injected with melanoma cells that formed melanoma tumors. After one group of mice was injected with melanin nanoparticles, both groups received an experimental radiation treatment designed by Dr. Dadachova and her colleagues specifically for treating melanoma.

This treatment uses a radiation-emitting isotope "piggybacked" onto an antibody that binds to melanin. When injected into the bloodstream, the antibodies latch onto the free melanin particles released by cells within melanoma tumors. Their isotopes then emit radiation that kills nearby melanoma tumor cells.

Following the second experiment, the melanoma tumors shrank significantly and to the same extent in both groups of mice - indicating that the melanized nanoparticles did not interfere with the radiation therapy's effectiveness. And once again, the melanized nanoparticles prevented radiation-induced bone-marrow damage: between the third and seventh day after the antibody-isotope radiation therapy was administered, mice injected with nanoparticles experienced a drop in white cells that was significantly less than occurred in mice not pre-treated with nanoparticles.

"The ability to protect the bone marrow will allow physicians to use more extensive cancer-killing radiation therapies and this will hopefully translate into greater tumor response rates," said Arturo Casadevall, M.D., Ph.D., professor of medicine and of microbiology & immunology, the Leo and Julia Forchheimer Chair in Microbiology & Immunology, and a co-author of the study.

Some nanoparticles could still be found in bone marrow 24 hours after their injection, which shouldn't pose a problem. "Since the nanoparticles are rapidly removed by phagocytic cells, they're unlikely to damage the bone marrow," said Dr. Dadachova. "We didn't detect any side effects associated with administering the particles."

"These results are encouraging for other potential applications of melanin, including radioprotection of other radiation-sensitive tissues, such as the gastrointestinal tract," noted Andrew Schweitzer, M.D., formerly a Howard Hughes Medical Institute fellow at Einstein and lead author of the study.

Clinical trials testing whether melanized nanoparticles might protect cancer patients undergoing radiation therapy could begin in two to three years, Dr. Dadachova predicted. She also noted that melanized nanoparticles might also have other applications, such as protecting workers charged with cleaning up nuclear accidents, protecting astronauts against radiation exposure in space, or even protecting people following a nuclear attack.

The paper, "Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer," was published in the April 26 online issue of the International Journal of Radiation Oncology, Biology and Physics. Other researchers involved in the study are Ekaterina Revskaya, Ph.D., Peter Chu, B.Sc., Matthew Friedman, Joshua D. Nosanchuk, M.D., Sean Cahill, Ph.D., and Susana Frases, Ph.D., all from Einstein, and Valeria Pazo, M.D., of Jacobi Medical Center.

(with Video)

####

About Yeshiva University Albert Einstein College of Medicine
Albert Einstein College of Medicine is one of the nations premier institutions for medical education, basic research and clinical investigation.

During the 2009-2010 academic year, Einstein is home to 2,775 faculty members, 722 M.D. students, 243 Ph.D. students, 128 students in the combined M.D./Ph.D. program, and approximately 350 postdoctoral research fellows at our Belfer Institute for Advanced Biomedical Studies. More than 8,000 Einstein alumni are among the nations foremost clinicians, biomedical scientists, and medical educators.

For more information, please click here

Copyright © Yeshiva University Albert Einstein College of Medicine

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Videos/Movies

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Rice lab expands palette for color-changing glass: Nanophotonics team creates low-voltage, multicolor, electrochromic glass March 8th, 2017

Water-Repellent Nanotextures Found to Have Excellent Anti-Fogging Abilities: Cone-shaped nanotextures could prevent fog condensation on surfaces in humid environments, including for power generation and transportation applications March 2nd, 2017

Triboelectric Nanogenerators Boost Mass Spectrometry Performance March 1st, 2017

Possible Futures

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Nanomedicine

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Materials/Metamaterials

Researchers make flexible glass for tiny medical devices: Glass can bend over and over again on a nanoscale March 27th, 2017

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX Technology Platform: Leading-edge I-fuse brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Nanobiotechnology

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Cryo-electron microscopy achieves unprecedented resolution using new computational methods March 25th, 2017

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project