Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Changing the Channel in Nanoelectronics

Abstract:
New computer simulations may help in the design of efficient molecular wires

Changing the Channel in Nanoelectronics

Weinheim, Germany | Posted on April 19th, 2010

Two types of trends can be identified in the length-dependent conductance of molecular wires, according to Chinese scientists. In an article published online in ChemPhysChem, Jianwei Zhao and colleagues describe different length-conductivity relationships in molecular wires depending on the structures dominating the electron-transport channels. With the aid of computer simulations, the researchers were able to define a quantitative relation between the energy band gaps of different conjugated molecules and the attenuation factor—an important parameter that determines the distance over which charge can be conducted efficiently through a material. "The new results may be helpful in the design of molecular wires for nanoelectronic applications", the researchers say.

An important step in the development of electronic devices at the single-molecule level is the understanding of charge transport through individual molecular wires. In the macroscopic world, the resistance of a metallic wire increases linearly with length. But the situation is completely different for nanometer-long molecular wires, which may have diverse molecular structures leading to different electron-transport behaviors.

To address this problem, Zhao and co-workers investigated the length dependence of the conductance through several conjugated organic molecules, thereby identifying two different trends depending on the molecular structure: a single-channel conductance and a multichannel one. The researchers found that in the case of single-channel molecules such as oligothiophene (an organic semiconductor), the conductance decays rapidly with the length, following an exponential law. However, if the molecular wires have multichannels, the decay of conductance shows a different behavior. For example, the conductance of short porphyrin-based chains decays almost linearly with length, making this type of conjugated molecules particularly promising for applications as molecular wires, according to the authors.

The simulations carried out by the Chinese team have also allowed them to find a way to determine the attenuation factor—an important indicator of electron transport through a molecular wire—directly from the energy band gap of the organic compound. The researchers believe that this observation could be of use in reaching one of the ultimate goals in molecular electronics: the design of robust molecular wires with efficient electron transport over long distances.

Author: Jianwei Zhao, Nanjing University (China), www.51-stars.com.cn/english/facultylr.asp?fln=ZHAO,Jianwei

Title: The Diversity of Electron-Transport Behaviors of Molecular Junctions: Correlation with the Electron-Transport Pathway

ChemPhysChem 2010, 11, No. 9, Permalink to the article: dx.doi.org/10.1002/cssc.201000092

####

For more information, please click here

Copyright © ChemPhysChem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

Academic/Education

NanoTecNexus Launches New App for Learning About Nanotechnology—STEM Education Project Spearheaded by Interns February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

KIT Increases Commitment in Asia: DAAD Funds Two New Projects: Strategic Partnerships with Chinese Universities and Communi-cation Technologies Network February 22nd, 2015

Minus K Technology Announces Its 2015 Vibration Isolator Educational Giveaway to U.S. Colleges and Universities February 18th, 2015

Chip Technology

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

Nanoelectronics

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Ultra-thin nanowires can trap electron 'twisters' that disrupt superconductors February 24th, 2015

Improved fire detection with new ultra-sensitive, ultraviolet light sensor February 17th, 2015

Nanotechnology facility planned in Lund, Sweden: A production facility for start-ups in the field of nanotechnology may be built in the Science Village in Lund, a world-class research and innovation village that is also home to ESS, the European Spallation Source February 15th, 2015

Announcements

UC research partnership explores how to best harness solar power March 2nd, 2015

Researchers turn unzipped nanotubes into possible alternative for platinum: Aerogel catalyst shows promise for fuel cells March 2nd, 2015

Important step towards quantum computing: Metals at atomic scale March 2nd, 2015

New Hopes for Treatment of Intestine Cancer by Edible Nanodrug March 2nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE