Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Changing the Channel in Nanoelectronics

Abstract:
New computer simulations may help in the design of efficient molecular wires

Changing the Channel in Nanoelectronics

Weinheim, Germany | Posted on April 19th, 2010

Two types of trends can be identified in the length-dependent conductance of molecular wires, according to Chinese scientists. In an article published online in ChemPhysChem, Jianwei Zhao and colleagues describe different length-conductivity relationships in molecular wires depending on the structures dominating the electron-transport channels. With the aid of computer simulations, the researchers were able to define a quantitative relation between the energy band gaps of different conjugated molecules and the attenuation factor—an important parameter that determines the distance over which charge can be conducted efficiently through a material. "The new results may be helpful in the design of molecular wires for nanoelectronic applications", the researchers say.

An important step in the development of electronic devices at the single-molecule level is the understanding of charge transport through individual molecular wires. In the macroscopic world, the resistance of a metallic wire increases linearly with length. But the situation is completely different for nanometer-long molecular wires, which may have diverse molecular structures leading to different electron-transport behaviors.

To address this problem, Zhao and co-workers investigated the length dependence of the conductance through several conjugated organic molecules, thereby identifying two different trends depending on the molecular structure: a single-channel conductance and a multichannel one. The researchers found that in the case of single-channel molecules such as oligothiophene (an organic semiconductor), the conductance decays rapidly with the length, following an exponential law. However, if the molecular wires have multichannels, the decay of conductance shows a different behavior. For example, the conductance of short porphyrin-based chains decays almost linearly with length, making this type of conjugated molecules particularly promising for applications as molecular wires, according to the authors.

The simulations carried out by the Chinese team have also allowed them to find a way to determine the attenuation factor—an important indicator of electron transport through a molecular wire—directly from the energy band gap of the organic compound. The researchers believe that this observation could be of use in reaching one of the ultimate goals in molecular electronics: the design of robust molecular wires with efficient electron transport over long distances.

Author: Jianwei Zhao, Nanjing University (China), www.51-stars.com.cn/english/facultylr.asp?fln=ZHAO,Jianwei

Title: The Diversity of Electron-Transport Behaviors of Molecular Junctions: Correlation with the Electron-Transport Pathway

ChemPhysChem 2010, 11, No. 9, Permalink to the article: dx.doi.org/10.1002/cssc.201000092

####

For more information, please click here

Copyright © ChemPhysChem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Chip Technology

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

NXP and GLOBALFOUNDRIES Announce Production of 40nm Embedded Non-Volatile Memory Technology: Co-developed technology to leverage GLOBALFOUNDRIES 40nm process technology platform March 24th, 2015

Building shape inspires new material discovery March 24th, 2015

Nanoelectronics

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Sharper nanoscopy: What happens when a quantum dot looks in a mirror? March 19th, 2015

Announcements

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE