Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Changing the Channel in Nanoelectronics

Abstract:
New computer simulations may help in the design of efficient molecular wires

Changing the Channel in Nanoelectronics

Weinheim, Germany | Posted on April 19th, 2010

Two types of trends can be identified in the length-dependent conductance of molecular wires, according to Chinese scientists. In an article published online in ChemPhysChem, Jianwei Zhao and colleagues describe different length-conductivity relationships in molecular wires depending on the structures dominating the electron-transport channels. With the aid of computer simulations, the researchers were able to define a quantitative relation between the energy band gaps of different conjugated molecules and the attenuation factor—an important parameter that determines the distance over which charge can be conducted efficiently through a material. "The new results may be helpful in the design of molecular wires for nanoelectronic applications", the researchers say.

An important step in the development of electronic devices at the single-molecule level is the understanding of charge transport through individual molecular wires. In the macroscopic world, the resistance of a metallic wire increases linearly with length. But the situation is completely different for nanometer-long molecular wires, which may have diverse molecular structures leading to different electron-transport behaviors.

To address this problem, Zhao and co-workers investigated the length dependence of the conductance through several conjugated organic molecules, thereby identifying two different trends depending on the molecular structure: a single-channel conductance and a multichannel one. The researchers found that in the case of single-channel molecules such as oligothiophene (an organic semiconductor), the conductance decays rapidly with the length, following an exponential law. However, if the molecular wires have multichannels, the decay of conductance shows a different behavior. For example, the conductance of short porphyrin-based chains decays almost linearly with length, making this type of conjugated molecules particularly promising for applications as molecular wires, according to the authors.

The simulations carried out by the Chinese team have also allowed them to find a way to determine the attenuation factor—an important indicator of electron transport through a molecular wire—directly from the energy band gap of the organic compound. The researchers believe that this observation could be of use in reaching one of the ultimate goals in molecular electronics: the design of robust molecular wires with efficient electron transport over long distances.

Author: Jianwei Zhao, Nanjing University (China), www.51-stars.com.cn/english/facultylr.asp?fln=ZHAO,Jianwei

Title: The Diversity of Electron-Transport Behaviors of Molecular Junctions: Correlation with the Electron-Transport Pathway

ChemPhysChem 2010, 11, No. 9, Permalink to the article: dx.doi.org/10.1002/cssc.201000092

####

For more information, please click here

Copyright © ChemPhysChem

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Academic/Education

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Chip Technology

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Nanoelectronics

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE