Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Leti Demonstrates Fully CMOS-Compatible Laser Source Coupled to a Silicon Waveguide

Abstract:
Results of WADIMOS Project Milestone Will Be Presented At SPIE Photonics Europe 2010

Leti Demonstrates Fully CMOS-Compatible Laser Source Coupled to a Silicon Waveguide

Grenoble, France | Posted on April 9th, 2010

Leti announced today that it has demonstrated a fully CMOS-compatible laser source coupled to a silicon waveguide, a major milestone toward the WADIMOS project's goal of fabricating silicon photonics circuits in CMOS foundries.

WADIMOS is an EU-funded research project to demonstrate a photonic interconnect layer on CMOS. Leti's partners in the project, which is coordinated by Imec, include STMicroelectronics, MAPPER Lithography, Lyon Institute of Nanotechnology (ILN) and the University of Trento.

Working with a circuit design from INL and Imec, Leti completed the specific process studies for the laser source to adapt and modify standard III-V materials process steps that would comply with a CMOS environment. Leti replaced gold-based metal contacts with a Ti/TiN/AlCu metal stack.

WADIMOS partners at SPIE Photonics Europe 2010 in Brussels will present the results, April 12-16.

The enormous computing power of multi-processor systems and manufacturing tools being considered will require data transfer rates of more than 100Terabit/s. These data rates may be needed on-chip, e.g. in multi-core processors, which are expected to require total on-chip data rates of up to 100TB/s by 2015, or off-chip, e.g. in short-distance data interconnects, requiring up to 100TB/s over a distance of 10-100 meters. Optical interconnects are the only viable technology for transmitting these amounts of data.

Besides a huge data rate, optical interconnects also allow for additional flexibility through the use of wavelength division multiplexing. This feature may be help realize more intelligent interconnect systems such as the optical network-on-chip system that the WADIMOS project also is studying.

WADIMOS, which is an abbreviation for Wavelength Division Multiplexed Photonic Layer on CMOS, will build a complex photonic interconnect layer incorporating multi-channel microsources, microdetectors and different advanced wavelength routing functions directly integrated with electronic driver circuits. It also will demonstrate the application of the electro-photonic ICs in an on-chip optical network and a terabit optical datalink.

####

About CEA-Leti
CEA is a French research and technology organization, with activities in three main areas: energy, technologies for information and healthcare, and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in the MINATEC excellence centre, Leti operates 8,000-m≤ state-of-the-art clean rooms, on a 24/7 schedule, on 200mm and 300mm wafer standards. With 1,200 employees, Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75 percent of its budget worth 205 MÄ. For more information, visit www.leti.fr.

For more information, please click here

Contacts:
CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Sarah-Lyle Dampoux
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Chip Technology

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Nanoelectronics

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Fast track control accelerates switching of quantum bits December 16th, 2016

GLOBALFOUNDRIES Demonstrates Industry-Leading 56Gbps Long-Reach SerDes on Advanced 14nm FinFET Process Technology: Proven ASIC IP solution will enable significant performance and power efficiency improvements for next-generation high-speed applications December 13th, 2016

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Events/Classes

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Nanometrics to Present at the 19th Annual Needham Growth Conference December 22nd, 2016

Leti Will Demonstrate Fusion of Autonomous Carís Senses: SIGMA FUSIONís Efficient, Sensor-based System Fits in a Microcontroller Platform, Anticipates Safety Requirements December 13th, 2016

Imec and Holst Centre Introduce Worldís First Solid-State Multi-Ion Sensor for Internet-of-Things Applications December 13th, 2016

Photonics/Optics/Lasers

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

New laser based on unusual physics phenomenon could improve telecommunications, computing January 12th, 2017

Researcher's discovery of new crystal structure holds promise for optoelectronic devices January 6th, 2017

The researchers created a tiny laser using nanoparticles January 5th, 2017

Research partnerships

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Zeroing in on the true nature of fluids within nanocapillaries: While exploring the behavior of fluids at the nanoscale, a group of researchers at the French National Center for Scientific Research discovered a peculiar state of fluid mixtures contained in microscopic channels January 11th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project